期刊文献+

Hybrid-lattice系统的精确解 被引量:1

Exact Solutions for the Hybrid-lattice System
下载PDF
导出
摘要 本文在试探函数法的基础上,给出由指数函数所组成的试探函数法,将其应用于非线性离散系统,借助符号计算系统Mathematica构造了Hybrid-Lattice系统的新的精确孤波解。该方法在构造mKdV差分微分方程、Ablowitz-Ladik-Lattice系统等其它的离散差分微分方程的精确解方面具有普遍意义。 Based on the trial function method, a new trial function method combined with exponential functions is presented and applied to the nonlinear discrete system. New exact solutions to the discrete Hybrid-Lattice system are constructed with the help of symbolic computation system in Mathematica. It is useful for seeking exact solutions to other discrete difference-differential equations, such as the mKdV lattice equation, Ablowitz-Ladik-lattice system, and so on.
作者 套格图桑
出处 《工程数学学报》 CSCD 北大核心 2008年第2期369-372,共4页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10461006) 内蒙古自治区高等学校科学研究项目(NJ02035) 内蒙古自治区自然科学基金(200408020103) 内蒙古师范大学自然科学研究基金(QN005023).
关键词 试探函数法 离散系统 Hybrid-lattice系统 精确孤波解 trial function method differential-difference system Hybrid-lattice system exact solitary wave solutions
  • 相关文献

参考文献5

二级参考文献46

共引文献237

同被引文献10

  • 1Dai C Q, Zhang J F. Jacobian elliptic function method for nonlinear differential-difference equations[J]. Chaos, Solitons and Fractals, 2006, 27(4): 1042-1047. 被引量:1
  • 2He J H, Wu X H. Exp-function method for nonlinear wave equations[J]. Chaos, Solitons and Fractals, 2006, 30(3): 700-708. 被引量:1
  • 3Wang M L, Li X Z, Zhang J L. The G/G-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Physics Letters A, 2008, 372(4): 417-423. 被引量:1
  • 4Baldwin D, et al. Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations[J]. Computer Physics Communications, 2004, 162(3): 203-217. 被引量:1
  • 5Yu Y X, Wang Q, Gao C X. Rational formal solutions of differential-difference equations[J]. Chaos, Solitons and Fractals, 2007, 33(5): 1642-1651. 被引量:1
  • 6Xin H. The exponential function rational expansion method and exact solutions to nonlinear lattice equa- tions system[J]. Applied Mathematics and Computation, 2010, 217(4): 1561-1565. 被引量:1
  • 7Bekir A. Application of the exp-function method for nonlinear differential edifference equations[J]. Applied Mathematics and Computation, 2010, 215(11): 4049-4053. 被引量:1
  • 8Kudryashov N A. Seven common errors in finding exact solutions of nonlinear differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(9-10): 3507~3529. 被引量:1
  • 9Parkes E J. Observations on the basic G'/G-expansion method for finding solutions to nonlinear evolution equations[J]. Applied Mathematics and Computation, 2010, 217(4): 1759-1763. 被引量:1
  • 10Asian I. A note on the G'/G-expansion method again[J]. Applied Mathematics and Computation, 2010, 217(2): 937-938. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部