期刊文献+

线性可分文本的SVM算法研究与改进 被引量:2

Algorithm Research on Linear Separated SVM for Text Classification
下载PDF
导出
摘要 在分析SVM算法的二次规划问题及利用可行性方向法求解二次规划问题的基础上,将效率较高的可行性方向法应用于求解SVM算法中的二次规划问题,给出线性可分文本的SVM算法的改进算法,改进后的SVM算法在时间复杂度上有着明显的提高,从而有效提高SVM算法的训练效率。 Based on analyzing the quadratic programming of SVM and using the method of feasible directions to solve the quadratic programming,This paper solves the quadratic programming by the method of feasible directions and raises a improved SVM algorithm for linear separated text,and the time complexity of the improved SVM algorithm is reduced greatly,that is to say the efficiency of SVM algorithm is improved.
出处 《计算机与数字工程》 2008年第3期18-20,共3页 Computer & Digital Engineering
关键词 支持向量机 线性可分 二次规划 可行性方向法 文本自动分类 support vector machine algorithm,linear separated,quadratic programming,method of feasible directions,automated text categorization
  • 相关文献

参考文献6

  • 1马宏伟..基于SVM的中文文本分类系统的建模与实现[D].大连理工大学,2005:
  • 2Nello Cristianini, John Shawe- Taylor, 李国正,王猛,曾化军译.An Introduction to Support Vector Machines and Other Kernel - based Learning Methods [ M ].北京:电子工业出版社,2004:8-10 被引量:1
  • 3方辉,王倩.支持向量机的算法研究[J].长春师范学院学报(自然科学版),2007,26(3):90-91. 被引量:13
  • 4薛毅..最优化原理与方法[M],2001.
  • 5唐发明..基于统计学习理论的支持向量机算法研究[D].华中科技大学,2005:
  • 6业宁,王迪,窦立君.信息熵与支持向量的关系[J].广西师范大学学报(自然科学版),2006,24(4):127-130. 被引量:10

二级参考文献11

  • 1[1]S.S.Keerthi,S.K.Shevade,C.Bhattachayya et al.Improvements to Platt's SMO Algorithm for SVM Classifier Design[J].Neural Computation,2001. 被引量:1
  • 2[2]E.Osuna.An Improved Training Algorithm for Support Vector Machines[J].InProc.IEEE Neural Networks in Signal Processing'97,1997. 被引量:1
  • 3[3]T.Joachims.Making Large-scale Support Vector Machine Learning Practical[A].Advances in Kernel Methods-Support Vector Learning,MIT Press,1998. 被引量:1
  • 4[4]John C.Platt.Fast Training of Support Vector Machines Using Sequential Mini mal Optimization[A].Advances in Kernel Method -Support Vector Learning.MIT press,1999. 被引量:1
  • 5[6]Fan Rong-En,Chen Pai-Hsuen,Lin Chih-Jen.Working Set Selection Using Second Order Information for Training Support Vector Machines[J].Journal of Machine Learning Research,2005. 被引量:1
  • 6VAPNIK V.The nature of statistical learning theory[M].New York:Springer-Verlag,1999. 被引量:1
  • 7SCHOLKOPF B,SMOLA A,WILLIAMSON R C,et al.New support vector algorithms[J].Neural Computation,2000,12(5):1207-1245. 被引量:1
  • 8SCHOKOPF B,PLATT J C,SMOLA A J,et al.Estimating the support of a high 2 dimensional distribution[R].Haifa:Department of Computer Science,University of Haifa,2001. 被引量:1
  • 9TSANG I W,KWOK J T,CHEUNG Pak-Ming.Core vector machines:Fast SVM training on very large data sets[J].Journal of Machine Learning Research,2005,6:363-392. 被引量:1
  • 10周伟达,张莉,焦李成.线性规划支撑矢量机[J].电子学报,2001,29(11):1507-1511. 被引量:15

共引文献20

同被引文献11

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部