期刊文献+

基于SVM的中文新闻评论的情感自动分类研究 被引量:4

Research on Sentiment Classification of Chinese Reviews Based on SVM
下载PDF
导出
摘要 情感分类是一项具有较大实用价值的分类技术,它可以在一定程度上解决网络评论信息杂乱的现象,方便用户准确定位所需信息。目前针对中文情感分类的研究相对较少,该文考虑将一些网络评论进行情感分类,判断一篇评论是正面还是反面。文本分类的机器学习方法较多,该文采用支持向量机的方法进行分类。该文特点在于采用具有语意倾向的词并综合其词性作为特征项.采用TF—IDF的值作为特征项权值。实验表明,用这种方法对网上的一些评论进行分类可以达到一个高的准确率。 Sentiment classification is a classification technology which has many useful applications.to a certain extend,it can solve the clutter of network reviews ,in order to facilitate the users to precisely define the necessary information. Up to now,most research of sentiment clas- sification is on English reviews,and little work has been done on Chinese reviews.In this paper, we will introduce how to apply SVM to solve sentiment classification problems. Its main target is to determine whether the reviews is positive or negative, in this paper, we will select the words which have semantic orientation as fetures, and use TF-IDF as the fetures presence vectors. This is the innovation of this article.The experimental results show that the method achieves an high accuracy rate when used to evaluate reviews from intemet.
作者 梁坤 古丽拉·阿东别克 LIANG Kun, Gulila.Altenbek (Information Science and Engineer College, XinJiang University, Ulmqi 830046, China)
出处 《电脑知识与技术》 2009年第5期3496-3498,共3页 Computer Knowledge and Technology
关键词 情感分类 语义倾向度 支持向量机 sentiment classification semantic tendency support vector machine
  • 相关文献

参考文献1

二级参考文献9

  • 1Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181. 被引量:1
  • 2Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346. 被引量:1
  • 3Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424. 被引量:1
  • 4Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86. 被引量:1
  • 5Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124. 被引量:1
  • 6K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28. 被引量:1
  • 7Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351. 被引量:1
  • 8HowNet[R]. HowNet's Home Page. http://www. keenage.com. 被引量:1
  • 9刘群 李素建.基于《知网》的词汇语义相似度的计算[A]..第三届汉语词汇语义学研讨会[C].台北,2002.. 被引量:14

共引文献326

同被引文献55

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部