期刊文献+

一种基于ACO的RBF神经网络训练方法 被引量:5

A New Training Algorithm for RBF Neural Network Based on ACO
下载PDF
导出
摘要 针对k平均聚类径向基(Radial Basis Function简称RBF)网络算法的聚类结果易受初始参数选取的影响,并常收敛于局部极小值的问题,提出一种将蚁群优化算法用于径向基神经网络训练过程,优化径向基函数的中心点,建立相应优化模型的算法.实验结果表明,该算法精确度高于k平均聚类径向基神经网络算法,且函数的拟合程度也得到了改善. To settle the problem that the cluster results of k-meanclustering Radial Basis Function (RBF) was easy to be influenced by selection of initial characters and converge to local minimum, Ant Colony Optimization for the RBF neural networks and a model based on this method were presented in this paper. Compared with k-mean clustering RBF Algorithm, the result demonstrates that the accuracy of Ant Colony Optimization for the Radial Basis Function (RBF) neural networks is higher, and the extent of fitting has been improved.
出处 《哈尔滨理工大学学报》 CAS 2008年第1期56-58,62,共4页 Journal of Harbin University of Science and Technology
基金 黑龙江省自然科学基金项目(F0316) 哈尔滨市学科后备带头人基金项目(2005AFXXJ020)
关键词 蚁群算法 径向基神经网络 k平均聚类 ACO RBF neural network k-meanclustering
  • 相关文献

参考文献6

  • 1OGLESBY J, MASON J S. Radial Basis Function Networks for Speaker Recognition [ A ]. Proceedings of International Conference on Acoustics, Speech, and Signal Processing [ C ]. Toronto, Canada: Causal Productions Pty Ltd. , 1991,393 -396. 被引量:1
  • 2罗赞文,吴志坚,韩曾晋.RBF网络在交通流模型辨识中的应用[J].清华大学学报(自然科学版),2001,41(9):106-110. 被引量:21
  • 3DORIGO M, MANIEZZO V, COLORNI A. Ant System Optimization by a Colony of Cooperating Agent [ J ]. IEEE Trans on Systems, Man and Cybernetics, 1996, 26 (1) : 29 -41. 被引量:1
  • 4COLORNI A. Heuristics from Nature for Hard Combinatorial Optimization Problems [J]. Int Irans in Opnl Res, 1996,3 ( 1 ) ; 1 - 21. 被引量:1
  • 5程启明,王勇浩.基于蚁群优化算法的模糊神经网络控制器及仿真研究[J].上海电力学院学报,2006,22(2):105-108. 被引量:8
  • 6吴月伟..基于径向基神经网络的飞机发动机故障诊断研究[D].中国民航大学,2006:

二级参考文献8

共引文献27

同被引文献39

引证文献5

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部