期刊文献+

基于半监督学习的k平均聚类框架 被引量:3

k-means clustering framework based on semi-supervised learning
下载PDF
导出
摘要 为克服k-means算法难以探测出一些局部分布稀疏不均、聚类区域的形状与大小不规整数据点集的聚类分布结构这个缺点,在半监督学习思想的指导下,针对混合属性空间区域中具有同一分布性质的带有类别标记的小样本数据集和无类别标记的大样本数据集,提出了一种基于半监督学习的k平均聚类框架。仿真实验表明:该框架经常能取得比k-means更好的聚类精度,从而说明这个半监督学习框架具有一定的有效性。 For some sparse-odd data sets with different size and shape of clusters, ordinary k-means algorithm cannot work well in exploiting the cluster-distribution.In order to conquer this shortcom-ing, under the idea of semi-supervised learning, a k-means clustering framework based on semi-su-pervised leaning is presented for an unlabeled large sample which has the same distribution with a labeled small sample in a hybrid attributes space.Simulations show that the framework can often get better clustering accuracy than k-means algorithm, validating the effectiveness of the semi-supervised learning framework to some extent.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2014年第5期1074-1082,共9页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(61103038)
关键词 半监督学习 混合属性 k平均聚类 归属度 semi-supervised learning hybrid attributes k-means clustering attributive measure
  • 相关文献

参考文献16

  • 1ARTHUR D, VASSILVITSKII S. k-means++: The advantages of careful seeding[ C ]//Proceedings of the eighteenth annu- M ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 2007: 1027-1035. 被引量:1
  • 2ZALIK K R. An efficient k-means clustering algorithm [ J]. Pattern Recognition Letters, 2008,29 (9) :1385-1391. 被引量:1
  • 3CAO F, LIANG J, JIANG G. An initialization method for the k-means algorithm using neighborhood model [ J ]. Comput- ers and Mathematics with Applications, 2009, 58 (3) : 474-483. 被引量:1
  • 4HUBERT L J, ARABIE P. Comparing partitions [ J ]. Journal of Classification, 1985, 2 (1) : 193-218. 被引量:1
  • 5DAVIES D L, BOULDIN D W. A cluster separation measure [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 1(2) :224-227. 被引量:1
  • 6DUNN J C. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters [ J ]. Cybernet- ics and Systems, 1973, 3 (3) : 32-57. 被引量:1
  • 7BEZDEK J C, PAL N R. Some new indexes of cluster validity [ J ]. IEEE Transactions on Systems, Man, and Cybernet- ics, 1998, 28( 3): 301-315. 被引量:1
  • 8庞晓敏,闵子建,阚江明.基于HSI和LAB颜色空间的彩色图像分割[J].广西大学学报(自然科学版),2011,36(6):976-980. 被引量:77
  • 9THOMAS H. CORME N, CHARLES E, et al. Rivest and Clifford Stein. Introduction to Algorithms[ M ]. 3rd Edition. The MIT Press,2009. 被引量:1
  • 10CHEN Xin-quan. Weighted clustering and evolutionary analysis of hybrid attributes data streams [ J ]. Journal of Comput- ers, 2008, 12(3) : 60-67. 被引量:1

二级参考文献50

  • 1李存华,孙志挥,陈耿,胡云.核密度估计及其在聚类算法构造中的应用[J].计算机研究与发展,2004,41(10):1712-1719. 被引量:63
  • 2张廷宪,郑志刚.耦合非线性振子系统的同步研究[J].物理学报,2004,53(10):3287-3292. 被引量:15
  • 3孙业明,关山,牛海波.基于小波变换的针叶苗木彩色图像分割[J].东北电力学院学报,2005,25(6):9-13. 被引量:2
  • 4Pikovsky A, Rosenblum M, Kurths J. Synchronization, a universal concept in nonlinear sciences. Cambridge: Cam?bridge University Press, 2001. 1-23. 被引量:1
  • 5Boccalettia S, Kurths J, Osipov G, et al. The Synchronization of chaotic systems. Phys Rep, 2002, 366: 1-101. 被引量:1
  • 6Kuramoto Y. Self-entrainment of a population of coupled non-linear oscillators. In: International Symposium on Mathematical Problems in Theoretical Physics, Tyoto, 1975. 420-422. 被引量:1
  • 7Acebron J A, Bonilla L L, Vicente C J P, et a1. The Kuramoto Model: A simple paradigm for synchronization phenomena. Rev Mod Phys, 2005, 77: 137-185. 被引量:1
  • 8Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. Berlin: Springer-Verlag, 1984. 5-21. 被引量:1
  • 9Bohm C, Plant C, Shao J M, et al. Clustering by synchronization. In: Proceedings of ACM SIGKDD'10, Washington, 2010. 583-592. 被引量:1
  • 10Pelleg D, Moore A. X-means: Extending K-means with efficient estimation of the number of clusters. In: Proceedings of ICML'OO, Stanford, 2000. 727-734. 被引量:1

共引文献91

同被引文献31

  • 1CAMACHO J, PIC J, FERRER A. Data understanding with PCA: Structural and variance information plots[J]. Ch- emometrics and Intelligent Laboratory Systems, 2010,100(1) : 48-56. 被引量:1
  • 2LIPOVETSKY S. PCA and SVD with nonnegative loadings[J]. Pattern Recognition, 2009,42( 1): 68-76. 被引量:1
  • 3LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999,401 (6755) : 788-791. 被引量:1
  • 4RADULOVIC J, RANKOVIC V. Feedforward neural network and adaptive network-based fuzzy inference system in study of power lines[J]. Expert Systems with Applications, 2010,37 (1) : 165-170. 被引量:1
  • 5PETER N B,JOAO P H,DAVID J K,et al. Fisherfaces.. Recognition using class specific linear projection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7):711-720. 被引量:1
  • 6ROWELS S T,SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000,290 (5500) : 2323-2326. 被引量:1
  • 7HE Xiao-feng, NIYOGI P. Locality preserving projections[C] ffAdvances in Neural Information Processing Sys- tems. Vancouver: [s. n. 7,2003:153-160. 被引量:1
  • 8LOPEZ M M, RAMIREZ J, ALVAREZ I, et al. SVM-based CAD system for early detection of the Alzheimer~s dis- ease using kernel PCA and LDA[J].Neuroscience Letters, 2009,464(3) : 233-238. 被引量:1
  • 9MIKA S, RATSCH G,WESTON J, et al. Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces[J].Pattern Analysis and Machine Intelligence, 2003,25(5):623-628. 被引量:1
  • 10HSUAN Y M. Kernel eigenfaces vs kernel fisherfaces: Face recognition using kernel methods[C] ff Processing of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington D C:IEEE Press, 2002 : 215-220. 被引量:1

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部