期刊文献+

基于QPSO算法的RBF神经网络参数优化仿真研究 被引量:23

Simulation study on the parameters optimization of radial basis function neural network based on QPSO algorithm
下载PDF
导出
摘要 针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解。实例仿真表明,该学习算法相比于传统的学习算法计算简单,收敛速度快,并由于其算法模型的自身特性比基于PSO的学习算法具有更好的全局收敛性能。 Coping with such hmitations of Particle Swarm Optimization (PSO) algorithm as finite samphng space, being easy to run into local optima, a new Radial Basis Function Neural Network ( RBF NN) training method based on Quantumbehaved Particle Swarm Optimization (QPSO) algorithm was proposed. A multidimensional vector composed of RBF NN parameters was regarded as a particle in this algorithm to evolve. Then, the feasible sampling space was searched for the global optima. The simulation results show that this learning algorithm has easier computation and more rapid convergence compared with other traditional learning algorithms. And due to the characteristic of the algorithm model, its global convergence ability is better than the one based on PSO.
出处 《计算机应用》 CSCD 北大核心 2006年第8期1928-1931,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60474030)
关键词 粒子群优化算法 量子粒子群优化算法 径向基函数神经网络 Particle Swarm Optimization(PSO) algorithm Quantum-behaved Particle Swarm Optimization(QPSO) algorithm Radial Basis Function Neural Network ( RBF NN)
  • 相关文献

参考文献10

  • 1曾建潮等编著..微粒群算法[M].北京:科学出版社,2004:157.
  • 2HaykinS 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004.. 被引量:48
  • 3KENNEDY J,EBERHART RC.Particle Swarm Optimazation[A].Proceedings of IEEE International Conference on Neural Networks[C].Piscataway,NJ:IEEE Service Center,1995.1942-1948. 被引量:1
  • 4SHI Y,EBERHART RC.A Modified Particle Swarm Optimizer[A].Proceedings of the IEEE International Conference on Evolutionary Computation[C].Piscataway,NJ:IEEE Press,1998.69-73. 被引量:1
  • 5CLERC M.The Swarm and Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization[A].Proceedings of CEC 1999[C].Piscataway,NJ:IEEE Press,1999.1951-1957. 被引量:1
  • 6SUN J,FENG B,XU WB.Particle Swarm Optimization with Particles Having Quantum Behavior[A].Proceedings of 2004 Congress on Evolutionary Computation[C].2004.325-331. 被引量:1
  • 7SUN J,XU WB.A Global Search Strategy of Quantum-behaved Particle Swarm Optimization[A].Proceedings of IEEE conference on Cybernetics and Intelligent Systems[C].2004.111 -116. 被引量:1
  • 8XU L,Krzyzak A,Oja E.Rival Penalized Competitive Learning for Clustering Analysis,RBF Net,and Curve Detection[J].IEEE Transactions on Neural Networks,1993,4(4):636 -649. 被引量:1
  • 9丁宏锴,萧蕴诗,李斌宇,岳继光.基于PSO-RBF NN的非线性系统辨识方法仿真研究[J].系统仿真学报,2005,17(8):1826-1829. 被引量:17
  • 10郭晶,孙伟娟.神经网络理论与Matlab 7实现[M].北京:电子工业出版社,2005.119-121. 被引量:3

二级参考文献11

  • 1Poggio T, Girosi F. Networks for Approximation and Learning [J]. Proc IEEE, 1990, 78: 1481-1496. 被引量:1
  • 2J Park, I W Sandberg. Universal approximation using radial-basis- function networks [J]. Neural Computation, 1990, 3(2): 246-257. 被引量:1
  • 3Shaohua Tan, Jianbin Hao, Joos Vandewalle. Efficient identification of RBF neural net models for nonlinear discrete-time multivariable dynamical systems [J]. Neurocomputing, 1995, 9(1): 11-26. 被引量:1
  • 4Haralambos Sarimveis, Alex Alexandridis, Stefanos Mazarakis and George Bafas.A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms [J]. Computers and Chemical Engineering, 2004, 28(1-2): 209-217. 被引量:1
  • 5J Kennedy, R Eberhart. Particle Swarm Optimization. Proc. IEEE Int. Conf. on Neural Networks [C]. 1995, 1942-1948. 被引量:1
  • 6R Eberhart, J Kennedy. A New Optimizer Using Particle Swarm Theory [C]. Proc. 6th Int. Symposium on Micro Machine and Human Science, 1995: 39-43. 被引量:1
  • 7J Kennedy. The particle swarm: social adaptation of knowledge [C]. Proc. IEEE Int. Conf. on Evolutionary Computation, 1997, 303-308. 被引量:1
  • 8Xu Lie, Krzyzak A, Oja E. Rival Penalized Competitive Learning for Clustering Analysis, RBF Net, and Curve Detection [J]. IEEE Trans on Neural Networks, 1993, 4(4): 636-649. 被引量:1
  • 9王旭东,邵惠鹤.RBF神经元网络在非线性系统建模中的应用[J].控制理论与应用,1997,14(1):59-66. 被引量:68
  • 10姜波,汪秉文.基于遗传算法的非线性系统模型参数估计[J].控制理论与应用,2000,17(1):150-152. 被引量:61

共引文献65

同被引文献186

引证文献23

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部