期刊文献+

PrefixSpan算法与CloSpan算法的分析与研究 被引量:6

Research and Analysis Between Algorithm of PrefixSpan and CloSpan
下载PDF
导出
摘要 数据挖掘领域的一个活跃分支就是序列模式的发现,即在序列数据库中找出所有的频繁子序列。介绍序列模式挖掘的基本概念,然后对序列模式中的经典算法PrefixSpan算法和基于PrefixSpan框架的闭合序列模式CloSpan算法进行了描述,并对它们的执行过程及其特点进行了分析与比较,总结了各自的优缺点,指出PrefixSpan算法适用于短序列方面挖掘,而CloSpan算法在长序列或者阈值较低时胜过PrefixSpan算法且CloSpan算法挖掘大型的数据库有更好的性能,得出的结果对序列模式挖掘的设计有重要的参考价值。 An active research in data mining area is the discovery of sequential patterns,which finds all frequent sub - sequences in a sequence database. Firstly introduces the basic concept of sequential pattern mining, then describes PrefixSpan algorithm and CloSpan which is based on PrefixSpan framework algorithm. The execution process and features of the sequencial mining classic algorithms were finally compared and analysed each other. It shows that PrefixSpan algorithm adapts to mine short sequences,but CloSpan outperforms PrefixSpan when the minimum support is low and sequence is long , furthermore CloSpan has better performance when minning longer frequent sequneces in a large data set. The result gained can be of important value as reference to the design of sequence mining.
出处 《计算机技术与发展》 2008年第1期70-73,76,共5页 Computer Technology and Development
关键词 序列模式挖掘 PREFIXSPAN算法 CloSpan算法 sequential pattem PrefixSpan algorithrn CloSpan algorithm
  • 相关文献

参考文献9

  • 1Agrawal A, Srikant R. Mining Sequential Patterns[ C]//In: Proc. of the 11th Int. Conf. on Data Engineering. Taipei: [s. n. ] ,1995. 被引量:1
  • 2Srikant A, Agrawal R, Mining Sequential Patterns: Generalizations and Performance Improvements[C]//In: Proc. of the Fifth Int. Conf. on Extending Database Technology (EDBT). Avignon, France: [s.n. ] ,1996. 被引量:1
  • 3Masseglia F, Gathala F, Poncelet P. The psp approach for mining sequential patterns [ C ]//In proc. 1998 european symp. principle of data mining and knowledge discovery (PKDD' 98). Nantes, France: [s. n. ], 1998. 被引量:1
  • 4Zaki M J, SPADE: An Efficient Algorithm for Mining Frequent Sequences[J]. In:Proc. of Machine Learning Journal, Special issue on Unsupervised Learning (Doug Fisher, ed, ), 2001,42 (1/2) :31 - 60. 被引量:1
  • 5Han J, Pei J, Mortazavi - Asl B, et al. FreeSpan: Frequent Pattern- Projected Sequential Pattern Mining[ C]//In: Proc. 2000 Int. Conf. Knowledge Discovery and Data Mining (KDD'00). Boston, MA: [s. n. ] ,2000 : 355 - 359. 被引量:1
  • 6Pei J ,Han J ,Mortazavi - Asl B, et al. PrefixSpan: Mining sequential patterns effidently by prefix - projected pattern gmwth[C]//In:Proc. 2001 Int. Conf. Data Engineering ( ICDE'01 ). Heidelberg, Germany: [s. n. ] ,2001:215 - 224. 被引量:1
  • 7Yan X, Han J, Afshar R. CloSpan: Mining closed sequential patterns in large datasets[C]//In Proc. 2003 SIAM Int. Conf. Data Mining (SDM'03). San Fransisco, CA: [s. n. ], 2003 : 166-177. 被引量:1
  • 8Afshar R. Mining frequent max, and closed sequential patterns [D]. Canada:School of Computing Science, Simon Fraser University, 2002. 被引量:1
  • 9Wang J, Han J : BIDE: Efficient mining of frequent closed sequences[ C]//In: Proc. 2004 int. conf. data engineering ( ICDE' 04). Boston, MA: [ s. n. ] ,2004:79 - 90. 被引量:1

同被引文献40

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部