期刊文献+

基于符号化表示的时间序列频繁子序列挖掘 被引量:3

Frequent Subsequence Mining in Time Series Based on Symbolic Representation
下载PDF
导出
摘要 提出一种新的基于符号化表示的时间序列频繁子序列的挖掘算法。利用基于PAA的分段线性表示法进行降维,通过在高斯分布下设置断点,实现时间序列符号化表示,利用投影数据库挖掘频繁子序列。该算法简单、新颖,运行快速,简化了子序列支持数的计算。 This paper proposes a new algorithm for mining frequent subsequence in time series based on symbolic representation. A dimensionality reduction technique called PAA linear segment representation is used. Under the Gaussian distribution, several breakpoints are set. The projected database is built to mine the frequent subsequence. The algorithm is simple and new, runs so fast, and reduces the cost of computing support counts of subsequences.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第10期61-63,共3页 Computer Engineering
基金 福建省自然科学基金资助项目(S0650013)
关键词 数据挖掘 频繁子序列 时间序列 符号化 data mining frequent subsequence time series symbolic
  • 相关文献

参考文献7

  • 1Zaki M J.Scalable Algorithm for Association Mining[J].IEEE Trans.on Knowledge and Data Mining,2000,12(3):372-390. 被引量:1
  • 2Jessica L,Eamonn K,Stefano L,et al.A Symbolic Representation of Time Series with Implications for Streaming Algorithms[C]//Proceedings of the 8th ACM SIGMOD Workshop on Research Issue in Data Mining and Knowledge Discovery.San Diego,CA:[s.n.],2003. 被引量:1
  • 3Keogh E.Kasetty S.On the Need for Time Series Data Mining Benchmarks:A Survey and Empirical Demonstration[C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Edmonton,Alberta,Canada:[s.n.],2002. 被引量:1
  • 4Loh W K,Kim S W.Index Interpolation:An Approach for Subsequence Matching Supporting Normalization Transform in Time-Series Databases[C]//Proceedings of the 9th International Confefence on Information and Knowledge Management.New York,USA:ACM Press.2000:480-487. 被引量:1
  • 5Lonardi S.Global Detectors of Unusual Words:Design,Implementation,and Applications tO Pattern Discovery in Biosequences[D].West Lafayette,USA:Department of Computer Sciences,Purdue University,2001-08. 被引量:1
  • 6tarsen R J,Marx M L.An Introduction to Mathematical Statistics and Its Applications[M].[S.l.]:Prentice Hall,1986. 被引量:1
  • 7Keogh E.The UCR Time Series Data Mining Archive[D].Irvine,CA,USA:Department of Information and Computer Science,University of California,2002. 被引量:1

同被引文献32

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部