期刊文献+

基于聚类的区间数时间序列的索引方法 被引量:3

Time Series of Intervals Index Based on Clustering
下载PDF
导出
摘要 在时间序列数据库中,大多数现有的相似性搜索方法都集中在如何提高算法的效率,而对于由不精确数据组成的时间序列如何进行相似性搜索,则研究比较少,不精确数据经常用区间数据来表示;通过识别区间数时间序列中的重要区间数,使得区间数时间序列的维数大幅度降低,该文针对由区间数组成的时间序列,提出了一种基于低分率聚类的索引方法。实验表明,该方法加快了区间数时间序列的查找过程,不会出现漏报现象。 Most existing approoches of similarity search in time series databases focus on the efficiency of algorithms but seldom provide a means to handle imprecise data. The imprecise data are normally presented in the interval. By identifying the important interval values from the time series of intervals, the dimensionality of the time series of intervals can be greatly reduced. This paper proposes an indexing approach of time series of intervals, based on clustering the time series of intervals in low resolution. As demonstrated by the experiments, the proposed approach speeds up the time series of intervals query process while it also guarantees no false dismissals,
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第22期4-6,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60173058)
关键词 区间数时间序列 相似性搜索 聚类 索引 Time series of intervals Similarity search Clustering Index
  • 相关文献

参考文献5

  • 1Liao S S, Tang T H, Liu W Y. Finding Relevant Sequences in Time Series Containing Crisp, Interval, and F uzzy Interval D ata[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2004, 34(5): 2071-2079 被引量:1
  • 2Rangarajan L, Nagabhushan P. Dimensionality Reduction of Multidimensional Temporal Data Through Regression[J]. Pattern Recognition Letters, 2004, 25(8): 899-910. 被引量:1
  • 3Fu T C, Chung F L, Luk R, et al. Financial Time Series Indexing Based on Low Resolution Clustering[C]. Proceedings of Temporal Data Mining: Algorithms, Theory and Applications Held in Conjunction with ICDM'04, 2004:1 -10. 被引量:1
  • 4Singhal A, Seborg D E. Clustering of Multivariate Time-series Data[C]. Proceedings of the American Control Conference,Anchorage, AK, USA, 2002: 3931-3936. 被引量:1
  • 5张尧庭,,方开泰著..多元统计分析引论[M].北京:科学出版社,1982:476页.

同被引文献32

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部