期刊文献+

闭合负序列模式挖掘

The Mining Closed Negative Sequential Patterns
下载PDF
导出
摘要 针对负序列模式挖掘的候选序列数量巨大的问题,在负序列模式算法PNSP的基础上提出了一种闭合负序列模式算法NPos D.经分析发现,NPos D算法能够挖掘出更加精简有效的负序列模式,算法是可行有效的. In view of the huge data of the negative sequential patterns mining in candidate sequences,based on PNSP,an algorithm called NPos D is put forward in this paper. It is discovered that NPos D is feasible and effective because it can mine negative sequential patterns more compactly and effectively.
作者 林颖
机构地区 武夷学院
出处 《哈尔滨师范大学自然科学学报》 CAS 2015年第6期72-76,共5页 Natural Science Journal of Harbin Normal University
基金 福建省教育厅科技项目(JA12323)
关键词 数据挖掘 闭合序列模式 负序列模式 闭合负序列模式 Data mining Closed sequential patterns Negative sequential patterns Closed negative sequential patterns
  • 相关文献

参考文献16

  • 1Agrawl R, Sfikant R. Mining Sequential Patterns [ A]. Pro- ceedings of the 11 th International Conference on Data Engi- neering [C]. Taipei, Taiwan,1995.3 - 14. 被引量:1
  • 2谢伙生,何星星.数据流中基于滑动窗口的序列模式挖掘算法[J].计算机工程与应用,2012,48(4):121-124. 被引量:3
  • 3陈超.基于数据挖掘的个性化学习模式研究[J].电子设计工程,2013,21(12):18-20. 被引量:11
  • 4张玲,陈硕,张旸.基于自相关获取周期的时间序列模式挖掘算法[J].信息工程大学学报,2015,16(2):209-213. 被引量:5
  • 5Agrawal R, Srikant R. Mining Quantitative Association Rules in Large Relational Tables [A]. Proceedings of the ACM SIGMOD Conference on Management of Data ( SIGMOD'96 ) [ C]. Montreal. 1996.1 - 12. 被引量:1
  • 6Srikant R, Agrawal R. Mining sequential patterns: Generali- zations and performance improvements [ A]. The 5th Interna- tional Conference on Extending Database Technology [ C]. London, UK : Springer - Verlag, 1996.3 - 17. 被引量:1
  • 7Ayres J, Flannick J, Gehrke J. Sequential pattern mining u- sing a bitmap representation [J]. Knowledge Discovery and Data Mining, 2002,12(6) :429 -435. 被引量:1
  • 8Pei J, Han J, Mortazavi B. Prefixspan : mining sequential pat- terns efficiently by prefix -projected pattern growth [ J ]. Data Engineering, 2001, 8(4) :215 -224. 被引量:1
  • 9Zaki M J. SPADE:An Effieient Algorithm for Mining Frequent Sequences [ J ]. Machine Learning, 2001, 11 (5) :31 - 60. 被引量:1
  • 10Yan X, Han J, Afshar R. CloSpan: mining closed sequential patterns in large data base [ C]. In: SPM'03, San Franeiso, CA, 2003. 被引量:1

二级参考文献34

  • 1于宁莉,易东云,涂先勤.时间序列中自相关与偏相关函数分析[J].数学理论与应用,2007,27(1):54-57. 被引量:41
  • 2Jiawei Han,Micheline Kamber.数据挖掘概念与技术[M].北京:机械工业出版社,2008:148-154. 被引量:13
  • 3Srikant R, Agrawal R.Mining sequential pattern: generalizations and performance improvements[C]//Proceedings of the l lth In- ternational Conference on Data Engineering(ICDE),Taipei,Tai- wan, 1995:3-14. 被引量:1
  • 4Ezeife C I,Lu Y.Mining Web log sequential patterns with posi- tion coded pre-order linked WAP-tree[J].The International Jour- nal of Data Mining and Knowledge Discovery(DMKD),2005, 10(1):5-38. 被引量:1
  • 5Ezeife C I, Lu Y.PLWAP sequential mining: open source code paper[C]//Proceedings of the Open Source Data Mining Work- shop on Frequent Pattern Mining Implementations in Conjunc- tion(SIGKDD), Chicago, IL, USA, 2005 : 26-29. 被引量:1
  • 6Pei J, Han J, Pinto H, et al.PrefixSpan: mining sequential pat- terns efficiently by prefix-projected pattern growth[C]//Proceed- ings of the 17th International Conference on Data Engineering, Los Alamitos, 2001 : 215-224. 被引量:1
  • 7Han J, Pei J, Chen Q, et al.Freespan: frequent pattern-projected sequential pattern mining[C]//Proc of the 2000 International Conference on Knowledge Discovery and Data Mining(KDD), Boston,MA,USA, 2000: 355-359. 被引量:1
  • 8Mendes L F.Bolin D,Han Jiawei.Stream sequential pattern min- ing with precise error bounds[C]//Proceedings of International Conference on Data Mining( ICDM ), Pisa, Italy, 2008 : 941-946. 被引量:1
  • 9Ezeife C l, Monwar M.SSM:a frequent sequential data stream patterns miner[C]//Proceedings of International Conference on Data Mining(ICDM), Omaha, Nebraska, USA, 2007. 被引量:1
  • 10He Xingxing,Xie Huosheng.Efficient pruning algorithm for min- ing frequent sequential pattern based on stream data[C]//Proceed- ings of the 26th National Database Conference,NanChang,2009: 439-445. 被引量:1

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部