期刊文献+

基于HSV颜色空间的中国虚拟人脑图像自动分割方法 被引量:7

Automatic Chinese Visual Human Image Segmentation in HSV Space
下载PDF
导出
摘要 虚拟人图像是目前研究的重点,其中脑图像尤为突出.在HSV颜色空间中对虚拟人脑图像进行分析,可以加大当前数据与下层数据的区别,以利于目标的分析.给出一种改进的各向异性扩散方程,并构造混合信息场,以降低噪声、过渡区域等因素的影响;使用Ostu算法与一种新颖的快速符号表算法对饱和度信息场与色度信息场进行分类,得到灰质分割结果;并利用解剖学知识、区域信息以及数学形态学知识对亮度场信息进行分析,以修正分割结果,最终将脑组织分离出来.实验结果表明该算法能较精确地得到分割结果. The Chinese Visible Human Project Research Team from The Third Military Medical University has successfully collected several Chinese visible human(CVH) data sets since October 2002. With these images a learning medicine machine can be developed, but CVH image segmentation is one of the hardest tasks, especially in the brain images. The Chinese visual human brain images are analyzed in HSV color space, which can distinguish different areas in brain clearly. A new fuzzy anisotropic diffusion function is presented, which can diffuse the images while preserving the edge information. With the effect of the fake grey matters, which belong to grey matters located under current image and have similar color with true grey matters, it is hard to get exact grey matters. In order to get exact grey matters from brain images, the Ostu method and a new fast table method are presented to analyze the saturation information, hue information, and value information. Using these methods the grey matters can be segmented exactly. Anatomy inforlnation and region information are fused to analyze the intensity information and confirm the final results correctly. The experiments to segment the Chinese visual human brain images show that the method of this paper can obtain right results in an accuracy way.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第12期2036-2043,共8页 Journal of Computer Research and Development
基金 香港特别行政区政府研究资助局研究基金项目(14185/01E) 香港中文大学研究基金项目(2050345)~~
关键词 彩色图像分割 HSV颜色空间 中国虚拟人 各向异性扩散 符号表 形态学 color image segmentation HSV space CVH anisotropic diffusion symbol table morphologytheory
  • 相关文献

参考文献14

  • 1K Boesen, K Rehm, K Schaper, et al. Quantitative comparison of four brain extraction algorithms [J]. NeuroImage, 2004, 22 (3) : 1255-1261. 被引量:1
  • 2Le Goualher, A M Argenti, et al. Statistical sulcal shape comparisons: Application to the detection of genetic encoding of the central sulcus shape [J]. NeuroImage, 2000, 19(11): 564 -574. 被引量:1
  • 3N K Logothetis, J Pauls, M Augath, et al. Neurophsiological investigation of the basis of the fMRI signal [J]. Nature, 2001, 412(12) : 150-157. 被引量:1
  • 4F G Woermann, S M Sisodiya, S L Free, et al. Quantitative MRI in patients with idiopathic generalized epilepsy[J]. Brain, 1998, 121(5): 1661-1667. 被引量:1
  • 5R Kinkins, M E Shenton, G Gerig, et al. Routine quantitative analysis of brain and cerebrospinal fluid volumes with MR imaging [J]. Magnetic Resonance Imaging, 1992, 2(6) : 619- 629. 被引量:1
  • 6G Gerig, J Martin, R Kikinis, et al. Unsupervised tissue type segmentation of 3D dual-echo MR head data [J]. Image Vision Compute, 1992, 10(6): 349-360. 被引量:1
  • 7M S Atkins, B T Mackiewich. Fully automatic segmentation of the brain in MRI [J ]. IEEE Trans on Medical Imaging, 1998, 17(1): 98-107. 被引量:1
  • 8A M Dale, B Fischl, M I Sereno. Cortical surface-based analysis Ⅰ: Segmentation and surface reconstruction [J]. Neurolmage, 1999, 9(2) : 179-194. 被引量:1
  • 9R Stokking, K L Vincken, M A Viergever. Automatic morphology-based brain segmentation (MBRASE) from MRI- T1 data [J].Neurolmage, 2000, 19(12) : 726-738. 被引量:1
  • 10丁震,胡钟山,杨静宇,唐振民,邬永革.一种基于模糊聚类的图象分割方法[J].计算机研究与发展,1997,34(7):536-541. 被引量:28

二级参考文献1

  • 1Fu K S,Pattern Recognit,1981年,14卷,1期,3页 被引量:1

共引文献27

同被引文献74

引证文献7

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部