期刊文献+

基于改进K-means算法的关键帧提取 被引量:9

Key Frame Extraction Based on Improved K-means Algorithm
下载PDF
导出
摘要 为克服传统聚类算法在关键帧提取过程中对初始参数较为敏感的问题,提出一种基于改进K-means算法的关键帧提取算法。在人工鱼群算法中,依据人工鱼群体相似度对提取的特征向量进行自组织聚类,采用进步最大原则使人工鱼聚集在几个极值点位置,以每个极值点群体相似度最高的人工鱼为初始聚类中心,执行K-means算法,得到聚类结果,并提取关键帧。实验结果表明,该算法的准确率较高,能较好地表达视频的主要内容。 In order to overcome the problems that the traditional clustering algorithm is sensitive to the initial parameter in the key frame extraction process,an efficient algorithm for key frame extraction based on improved K-means algorithm is proposed in this paper.In the implementation of the Artificial Fish Swarm Algorithm(AFSA) clustering algorithm,the artificial fish implement self-organization clustering under the guidance of group similarity and ultimately the artificial fish gathered in several extreme points,according to the greatest progress principle.The artificial fish with the biggest group similarity in each extreme point is set as the initialized cluster center.This paper implements K-means algorithm to obtain the final clustering result and extracts key frame.Experimental result shows that the accuracy of this algorithm is high,and can well express the main content of the video.
出处 《计算机工程》 CAS CSCD 2012年第23期169-172,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61170126) 江苏省自然科学基金资助项目(BK2009199)
关键词 视频检索 关键帧 群体相似度 特征提取 人工鱼群算法 video retrieval key frame group similarity feature extraction Artificial Fish SwarmAlgorithm(AFSA)
  • 相关文献

参考文献10

二级参考文献36

  • 1Aslandogan YA, Yu CT. Techniques and systems for image and video retrieval. IEEE Trans. on Knowledge and Data Engineering, 1999,11(1):56-60. 被引量:1
  • 2章毓晋.图像工程(上册:图像处理与分析).北京:清华大学出版社,1999. 被引量:1
  • 3Malljunath BS, Ohm JR, VasudenVan VV, et al. Color and texture descriptors. IEEE Trans. on CSVT, 2001,11(6):703- 715. 被引量:1
  • 4Stricker M, Orcngo M. Similarity of color images. IS&T/ SPIEC for Storage and Retrieval for Image and Video Databases Ⅲ, 1995. 被引量:1
  • 5Stricker M, Orengo M. Similarity ofcolor images. SPIn Storage and Retrieval for Image and Video Databases Ⅲ, 21 85:381-392. 被引量:1
  • 6Zhang HongJiang, Wang J Y A, Altunbasak Y. Content based video retrieval and compression: A united solution[A]. In: IEEE International Conference on Image Processing, Washington, DC, 1997. 13~16. 被引量:1
  • 7Liu Tianming, Zhang Hongjiang, Qi Feihu. A novel video key frame extraction algorithm based on perceived motion energy model[J]. IEEE transactions on circuits and systems for video technology, 2003, 13(10): 1006~1013. 被引量:1
  • 8Hanjalic A, Zhang Hongjiang. An integrated scheme for automated video abstraction based on unsupervised cluster validity analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(8): 1280~1289. 被引量:1
  • 9Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M].New york: Norwell, 1981. 被引量:1
  • 10Hung Mingchuan, Yang Donlin. An efficient fuzzy C means clustering algorithm[A]. In: IEEE international conference on data mining, San Jose, California, 2001. 225~232. 被引量:1

共引文献79

同被引文献41

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部