期刊文献+

利用遗传模拟退火算法优化神经网络结构 被引量:17

Application genetic and simulated annealing algorithm for optimization of neural network structure
下载PDF
导出
摘要 常用的神经网络是通过固定的网络结构得到最优权值,使网络的实用性受到影响。引入了一种基于方向的交叉算子和变异算子,同时把模拟退火算法引入了遗传算法,结合遗传算法和模拟退火算法的优点,提出了一种优化神经网络结构的遗传——模拟退火混合算法,实现了网络结构和权值的同时优化。仿真实验表明,与遗传算法和模拟退火算法相比,该算法优化的神经网络收敛速度较快、预测精度较高,提高了网络的处理能力。 A conventional neural network often optimizes the weights through invariable network structure which has limited the extensive use of the neural network.The crossover operator based on direction and mutation are introduced.This paper puts forward genetic and simulated annealing algorithm to train the neural networks,combining the merits of genetic algorithm and that of simulated annealing algorithm,which makes weights and structure of artificial neural networks be optimized together.The result shows that the neural network optimized by the presented algorithm has the advantages of quicker convergence rate and higher precision compared with genetic algorithm and simulated annealing algorithm,and that the processing ability of networks is raised.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第36期74-76,156,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.50077007) 留学归国人员基金(No.93409501)
关键词 遗传算法 模拟退火算法 神经网络 优化 genetic algorithm simulated annealing neural networks optimization
  • 相关文献

参考文献9

二级参考文献27

  • 1谢春娣,梅家斌.遗传算法在神经网络权值优化中的应用[J].中南民族大学学报(自然科学版),2001,20(z1):1-3. 被引量:6
  • 2彭天好,范龙振.BP神经网络的一种稳健改进算法[J].计算机应用研究,1996,13(6):29-30. 被引量:1
  • 3王耀南.一种神经网络的快速学习算法及其在图象边缘检测中的应用[J].计算机研究与发展,1997,34(5):377-381. 被引量:4
  • 4[3]Miller, G.F,Todd,P.M.and Hedge,S. U. Designing neural networks using genetic algorithms. Proccedings of Third International Conference on Genetic Algorithms, pp. 379 ~ 384,1989. 被引量:1
  • 5[4]Gary G. Yen, Haiming Lu. Hierachical Genetic Algorithm Based on Neural Network Design. IEEE Symposium on Combinations of Evolutionary Computation and Neural Network,2000. 被引量:1
  • 6[5]Goldberg D E. Genetic Algorithms in Search. Optimization & Machine Learning. Addison-Wesley Publishing, 1989. 被引量:1
  • 7[6]M. Srinivas and L. M. Patnaik, Genetic search: analysis using fitness moments, IEEE Transactions on Knowledge and Data Engineering, Volume:8 Issue: 1, Feb. 1996. 被引量:1
  • 8J Moody. Prediction Risk and Architecture Selection for Neural Networks[C].In:V Cherkassky,J Friedman,H Wechsler eds. From Statistics to Neural Networks:Thoery and Pattern Recognition Application,NATO ASI Series F,New York:Springer-Verlag, 1994:136,147-165. 被引量:1
  • 9S E Fahlman, C Lebiere.The Cascade-Correlation Learning Architecture[C].In:D S Tourezky ed.Advances in Neural Information Processing Systerm,San Mateo,CA:Morgan Kaufmann,1990-2002:524-532. 被引量:1
  • 10B Hassibi, D Stork,G Wolff. Optional Brain Surgeon and General Network Pruning[C].In:IEEE International Conference on Neural Networks,1993:293-299. 被引量:1

共引文献137

同被引文献165

引证文献17

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部