期刊文献+

基于改进AFSA算法的BP神经网络的研究 被引量:3

Research on BP neural networks based on improved artificial fish-swarm algorithm
下载PDF
导出
摘要 针对BP神经网络收敛速度慢、易陷入局部极小的缺点,提出将改进的人工鱼群算法与BP算法相结合的混合算法训练人工神经网络,建立了相应的优化训练模型及训练过程。通过基于生物免疫机制改进的人工鱼群算法优化训练多层前向神经网络,使神经网络对训练初值和参数要求不高,扩大了权值的搜索空间,提高了收敛速度和学习精度,有效地协调全局和局部搜索能力。仿真结果表明,该算法性能优于其它算法,具有均方误差值小、收敛速度快和计算精度高等特点,是一种更有效的神经网络训练算法。 According to weak points of slow convergence and being apt to local minimum about BP neural network, hybrid algorithm combining improved artificial fish-swarm algorithm with BP (error back propagation) algorithm is suggested to train the artificial neural network. Besides, the corresponding optimized training model and training process are set up. The biological immunity mechanism is introduced into the AFSA to optimize the weight and threshold of neural network, to enlarge the search space of the weight of it, better the convergence speed and learning accuracy, and effectively coordinate the search ability. Simulation result shows that because of the advantages of low request for initial values and parameters, little mean square errors, fast convergence and accurate calculation, this algorithm is better than other algorithms, so it is a more efficient neural network training algorithm.
作者 刘双印
出处 《计算机工程与设计》 CSCD 北大核心 2009年第20期4719-4721,4765,共4页 Computer Engineering and Design
基金 国家星火计划基金项目(2007EA780068) 广东省自然科学基金项目(7010116) 广东省粤港关键领域重点突破基金项目(2006A25007002) 湛江市科技计划基金项目(2008C08017)
关键词 改进人工鱼群算法 BP神经网络 免疫算子 组合优化 随机搜索 improved artificial fish-swarm algorithm BP artificial neural network immune operator combinatorial optimizing random search
  • 相关文献

参考文献15

二级参考文献48

共引文献924

同被引文献43

  • 1Dellana S, West D. Predictive modeling for wastewater applications: linear and nonlinear approaches [ J ]. Environmental Modelling and Software, 2009,24( 1 ) :96 - 106. 被引量:1
  • 2Faruk D O. A hybrid neural network and ARIMA model for water quality time series prediction [ J ]. Engineering Applications of Artificial Intelligence, 2010,23 (4) : 586 - 594. 被引量:1
  • 3Palani S, Liong S Y, Tkalich P. An ANN application for water quality forecasting[J]. Marine Pollution Bulletin, 2008,56(9) : 1586 - 1597. 被引量:1
  • 4Han H G, Chen Q L, Qiao J F. An efficient self-organizing RBF neural network for water quality prediction [ J ]. Neural Networks, 2011,24(7) :717 -725. 被引量:1
  • 5West D, Dellana S. An empirical analysis of neural network memory structures for basin water quality forecasting[ J]. International Journal of Forecasting, 2011,27 ( 3 ) :777 - 803. 被引量:1
  • 6Suykens J A K, van Gestel T, de Brabanter J, et al. Least squares support vector machines [ M ]. Singapore : World Scientific, 2002:71 - 76. 被引量:1
  • 7Ibrahim B A, Ahmet A. A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm[J]. Information Sciences, 2013,233:25 -35. 被引量:1
  • 8Liao R J, Zheng H B, Grzybowski S, et al. Particle swarm optimization-least squares support vector regression based forecasting model on dissolved gases in oil-filled power transformers [ J ]. Electric Power Systems Research, 2011,81 (12) :2074 -2080. 被引量:1
  • 9Liu S Y, Xu L Q, Li D L, et al. Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization[J]. Computers and Electronics in Agriculture, 2013(95) : 82 -91. 被引量:1
  • 10Robert R G. An introduction to cultural algorithms [ C ] // Proceedings of the 3th Annual Conference on Evolution Programming. Singapore: World Scientific Publishing, 1994: 131- 136. 被引量:1

引证文献3

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部