摘要
提出了一个基于模糊集理论的新的神经网络结构及其学习算法。这种神经网络是对标准的BP网络修改后构成的(记作FIBP)。并通过几个实例仿真验证其有效性。实验结果表明,当用FIBP网络解决动态的、高度非线性的函数逼近时,其学习速度比BP网络快,精度高而且泛化能力高。
This paper presents a novel neural network architecture based on fuzzy set theory, FIBP. Its architecture is constructed by modifying the standard BP network. Its learning algorithm is also proposed. The network is tested using several dynamic and highly nonlinear examples. Experimental results demonstrate that the fuzzy neurons in the network and its learning algorithm provide enhanced network architecture and improve the performance of these networks significantly.
出处
《计算机工程》
CAS
CSCD
北大核心
2004年第9期61-62,F003,共3页
Computer Engineering
基金
国家自然科学基金项目(60135010)
上海市博士后科研计划基金资助项目
同济大学工科基金资助项目
关键词
神经网络
模糊集
学习算法
泛化能力
网络结构
Neural network
Fuzzy set
Learning algorithm
Generalization capability