期刊文献+

基于神经网络的电信客户流失预测主题建模及实现 被引量:18

Telecom churn prediction modeling and application based on neural network
下载PDF
导出
摘要 客户流失管理是电信运营商通过对客户需求满意度调查进行有针对性挽留客户的一个重要方法,其中最关键的就是对客户流失行为做出预测。提出了一种基于神经网络的客户流失预测模型。根据行业专家经验值选取分析变量,通过神经网络计算分析变量的权值,建立客户流失预测模型并对客户流失趋势进行预测。该方法与决策树和贝叶斯网络等算法相比,通过使用两次神经网络,从原始数据上千个属性中提炼出与客户流失度相关性较大的属性,分析出的影响流失属性更利于下一步的客户挽留工作。 Churn management is a major focus of mobile operators to retain subscribers via satisfying their needs under resource constraints. One of the most important tasks is churn prediction. A customer churn prediction model based on neural network was put forward. Choose analysis variable according to expert empirical evaluation, and calculate the weight of analysis variable using neural network, set up customer churn prediction model and predict customer churn. Compared to decision tree and Bayesian network, the attributes closely related to churn degree were abstracted by using two neural networks. The attributes obtained are more favorable for customer detainment.
出处 《计算机应用》 CSCD 北大核心 2007年第9期2294-2297,共4页 journal of Computer Applications
基金 四川省科技厅科技攻关项目(2006Z01-011)
关键词 BP神经网络 关键绩效指标 客户流失 商业智能 Back Propagation Neural Network (BPNN) Key Performance Indicator (KPI) churn management business intelligent
  • 相关文献

参考文献7

二级参考文献15

  • 1CHICKERING D, HECKERMAN D. Efficient Approximations for the Marginal Likelihood of Bayesian Networks with Hidden Variables [ A]. Proceeding of the 12th conference on Uncertainty in Artificial Intelligence[C]. 1996. 158 ~ 168. 被引量:1
  • 2HECKERMAN D. Bayesian networks for data mining[J]. Data Mining and Knowledge Discovery, 1997,1 ( 1 ) :79 ~ 119. 被引量:1
  • 3COOPER G, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning , 1992,9(4) :309 ~347. 被引量:1
  • 4CHICKERING D, HECKERMAN D, GEIGER D. Learning Bayesian networks: search methods and experimental results [ A ]. proceedings of fifth conference on artificial intelligence and statistics[C]. 1995. 被引量:1
  • 5MADIGAN D, YORK J. Bayesian graphical models for discrete data[J]. International Statistical Review, 1995,63(2): 307 ~347. 被引量:1
  • 6GIUDICI P, CASTELO R. Improving markov chain monte carlo model search for data mining [ J ]. Machine Learning, 2003,50 ( 1-2) :215 ~232. 被引量:1
  • 7IBM. Mining your own business in telecoms using DB2 Intelligent Miner for Data[ EB/OL ]. http :∥www. redbooks. ibm. com 被引量:1
  • 8HECKERMAN D, GEIGER D, CHICKERING D. Learning Bayesian networks: The combination of knowledgeand statistical data[ J ]. Machine Learning, 1995.20 ( 3 ) :241 ~ 243. 被引量:1
  • 9FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian Network Classifiers [ J ]. Machine Learning, 1997,29 ( 2 - 3 ) : 131 - 163. 被引量:1
  • 10FAYYAD U, PIATET G S, SMYTH P. Knowledge Discovery and Data Mining: Towards a Unifying Framework [ A ]. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining[ C]. 1996.82 ~ 88. 被引量:1

共引文献25

同被引文献153

引证文献18

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部