期刊文献+

基于GMDH的“一步式”客户流失预测集成建模 被引量:7

“One-step” customer churn prediction ensemble modeling based on GMDH
原文传递
导出
摘要 在客户流失预测问题中,客户数据的特征往往会影响模型的预测效果.分析了常用的"两步式"客户流失预测方法的不足,提出了基于数据分组处理(GMDH)技术的"一步式"客户流失预测集成研究框架.该框架一方面将数据预处理和客户流失预测建模过程进行集成,另一方面用多分类器集成策略进行客户流失预测建模.以客户数据类别分布不平衡的客户流失预测问题为例,构建了与数据特征相适应的"一步式"集成模型.实证结果表明,该方法能够更有效地进行客户流失预测. In customer churn prediction,the characteristics of customer data tend to affect the prediction results of modeling.After analyzing the disadvantages of the commonly used "two-step" methods,this paper proposed "one-step" ensemble framework for customer churn prediction based on group method of data handling(GMDH).On the one hand,this framework fused data pre-processing and customer churn prediction modeling;on the other hand,it adopted multiple classifiers ensemble strategies to model the customer churn prediction.Regarded the customer churn prediction problem with imbalanced data as an example,a "one-step" ensemble model corresponding to the customer data characteristic was constructed. Empirical results shown that this method can predict customer churn more effectively.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2012年第4期807-814,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71101100 71071101) 高等学校博士学科点专项科研基金(20110181120047) 国家博士后科学基金(2011M500418) 国家科技部软科学项目(2011GXQ4D074) 四川省软科学计划(2011ZR0071) 中央高校新青年教师科研启动基金(2010SCU11012)
关键词 客户流失预测 “一步式”集成模型 数据分组处理 集成学习 customer churn prediction "one-step"ensemble model group method of data handling ensemble learning
  • 相关文献

参考文献30

  • 1Bhattacharya C B.When customers are members:Customer retention in paid membership contexts[J].Journal of the Academy of Marketing Science,1998.26(1):31-44. 被引量:1
  • 2Reid A,Catterall M.Invisible data quality issues in a CRM implementation[J].Journal of Database Marketing & Customer Strategy Management,2005,12(4):305-314. 被引量:1
  • 3Burez J,Van den Poel D.Handling class imbalance in customer churn prediction[J].Expert Systems with Applications,2009,36(3):4626-4636. 被引量:1
  • 4Mannino M,Yang Y J,Ryu Y.Classification algorithm sensitivity to training data with non representative attribute noise[J].Decision Support Systems,2009,46(3):743-751. 被引量:1
  • 5Wang S.Classification with incomplete survey data:A Hopfield neural network approach[J].Computers and Operations Research,2005,32(10):2583-2594. 被引量:1
  • 6Yu X,Guo S S,Guo J,et al.An extended support vector machine forecasting framework for customer churn in e-commerce[J].Expert Systems with Applications,2011,38(3):1425-1430. 被引量:1
  • 7Kim S Y,Jung T S,Suh E H,et al.Customer segmentation and strategy development based on customer lifetime value:A case study[J].Expert systems with Applications,2006,31(1):101-107. 被引量:1
  • 8Cao K,Shao P J.Customer churn prediction based on SVM-RFE[C]// International Seminar on Business and Information Management,Washington.DC:IEEE Computer Society,2008:306-309. 被引量:1
  • 9Wang N,Niu D.Credit card customer churn prediction based on the RST and LS-SVM[C]// 6th International Conference on Service Systems and Service Management,Washington,DC:IEEE Computer Society,2009: 275-279. 被引量:1
  • 10Tsai C F,Chen M Y.Variable selection by association rules for customer churn prediction of multimedia on demand[J].Expert Systems with Applications,2010,37(3):2006-2015. 被引量:1

二级参考文献65

共引文献135

同被引文献67

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部