期刊文献+

EFFECTIVE IMAGE SEGMENTATION FRAMEWORK FOR GAUSSIAN MIXTURE MODEL INCORPORATING LOCAL INFORMATION 被引量:3

结合图像局部信息的高斯混合型图像分割框架(英文)
下载PDF
导出
摘要 A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results. 针对现有的基于判别型或聚类型的图像,用分割方法无法处理被噪声污染的图像的现状,提出一种新的两步式图像分割框架。该框架首先利用图像的局部信息重塑图像的灰度直方图,增强了像素的类间散布性和类内紧凑性,然后将现有的基于判别型或基于聚类型图像分割方法在重塑图像上执行,从而提高了现有图像分割算法的有效性和鲁棒性。文中用典型的聚类型方法高斯混合模型来说明该框架的可行性。由于框架的两个步骤具有独立性,因此可推广到现有的其他基于像素或直方图的方法。在人工和真实图像上的实验结果证明,这种两步图像分割框架可以获得有效且鲁棒的图像分割结果。
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期266-274,共9页 南京航空航天大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(60505004,60773061)~~
关键词 pattern recognition image processing image segmentation Gaussian mixture model (GMM) expectation maximization (EM) 模式识别 图像处理 图像分割 高斯混合模型 期望最大化
  • 相关文献

参考文献10

  • 1Chen Songcan,Li Daohong.Image binarization fo-cusing on objects[].Neural Computing and Applications.2006 被引量:1
  • 2Hamza A B,Krim H.Image denoising:a nonlinear robust statistical approach[].IEEE Transactions on Signal Processing.2001 被引量:1
  • 3Borenstein E,Malik J.Shape guided object segmen-tation[].IEEE Computer Society Confer-ence on Computer Vision and Pattern Recognition.2006 被引量:1
  • 4Otsu N.A Threshold Selection Method from Gray-Level Histograms[].IEEE Transactions on Systems Man and Cybernetics.1979 被引量:1
  • 5McLachlan G,Peel D.Finite Mixture Models[]..2000 被引量:1
  • 6Chen,SC,Zhang,DQ.Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[].IEEE Trans Syst Man Cybern Part B Cybern.2004 被引量:1
  • 7Zhang DQ,Chen SC.A novel kernelized fuzzy C-means algorithm with application in medical image segmentation[].Artificial Intelligence.2004 被引量:1
  • 8Cai Weiling,Chen Songcan,Zhang Daoqiang.Fast and robust fuzzy C-means clustering algorithms incorporating local information for i mage segmentation[].Pattern Recognition.2007 被引量:1
  • 9Sanjay-Gopal S,Thomas J Hebert.Bayesian Pixel classification usingspatially variant finite mixtures and the generalized EMalgorithm[].IEEE Transactions on Image Processing.1998 被引量:1
  • 10Blekas K,Likas A,Galatsanos N P,et al.A Spatially Constrained Mixture Model for Image Segmentation[].IEEE Transactions on Neural Networks.2005 被引量:1

同被引文献18

  • 1杜晓晨,刘建平.改进的模糊阈值图像分割方法[J].光电工程,2005,32(10):51-53. 被引量:13
  • 2陶文兵,刘李漫,田金文,柳健.采用遗传算法与最大模糊熵的双阈值图像分割[J].信号处理,2005,21(6):684-687. 被引量:9
  • 3徐俊杰,忻展红.基于微正则退火的频率分配方法[J].北京邮电大学学报,2007,30(2):67-70. 被引量:22
  • 4SEZGIN M, SANKUR B. Survey over Image Thresholding Techniques and Quantitative Performance Evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146-165. 被引量:1
  • 5LEE T Y, CHEN C J, TSENG C L. Application of Automated Linear Simplification Method for Fractal Reality of Geomorphic Data[J]. Survey Eng., 2006, 48(1-2): 41-62. 被引量:1
  • 6AWARD M, CHEHDI K, NASRI A. Multi-component Image Segmentation using a Hybrid Dynamic Genetic Algorithm and Fuzzy C-means[J]. Image Processing, IET, 2009, 3(2): 52-62. 被引量:1
  • 7Kwang-Baek Kim,,Am-suk Oh,Young-Woon Woo.PCA-Based Face Ver-ification and Passport Code Recognition Using Improved FKCN Algo-rithm. Intelligent Systems Design and Applications . 2008 被引量:1
  • 8Diplaros A,Vlassis N,Gevers T.A spatially constrained generative model and an EMalgorithmfor image segmentation. IEEE Transactions on Neural Networks . 2007 被引量:1
  • 9Neal,R.M,Hinton.A new view of the EM algorithm that justifies incremental,sparse,and other variants. Learning in Graphical Models . 1998 被引量:1
  • 10Weiling Cai,Songcan Chen,Daoqiang Zhang.Fast and robust fuzzy c-means clusteringalgorithmsincorporatinglocal informationforimagesegmentation〔J〕. The journal of the pattern recognition society . 2007 被引量:1

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部