期刊文献+

基于人工免疫系统的客户流失分析

Analysis of customer loss based on artificial immune system
下载PDF
导出
摘要 针对目前客户流失分析中的过量抽样和规则不容易理解导致分类算法在实际应用中的效果不明显的问题,提出了一种抗体抗原交叉的规则归纳算法(IRAA)。该算法基于人工免疫思想,结合了Michigan方法模型的规则提取和分类方法,并且在其抗体的克隆选择过程中增加抗体与抗原的交叉。通过与传统分类算法的比较实验表明,IRAA提高了分类准确率,导出了容易理解的规则。 Concerning to the low efficiency of the classification algorithm in the real applications which was caused by over-sampling and misunderstanding rules in the analysis of customer loss, a new classified method, Induction of Rule with Antibody-cross-antigen of Artificial immune system (IRAA), was proposed. IRAA was based on artificial immune system, and combined with both rule extraction and classification of Michigan approach model. Furthermore, antibody-cross-antigen was added in the antibody' s clone selection process. Compared with tradition classification algorithms in actual application, results show the proposed algorithm obtains higher precision and easy-to-understand rules.
出处 《计算机应用》 CSCD 北大核心 2008年第7期1705-1708,共4页 journal of Computer Applications
关键词 客户流失分析 数据挖掘 分类 人工免疫系统 克隆选择 customer loss analysis data mining classification artificial immune system clone selection
  • 相关文献

参考文献9

二级参考文献65

  • 1戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256. 被引量:52
  • 2戴汝为,王珏.巨型智能系统的探讨[J].自动化学报,1993,19(6):645-655. 被引量:39
  • 3陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16. 被引量:8
  • 4学科交叉和技术应用专门小组(美).学科交叉和技术应用[R].北京:科学出版社,1994.43. 被引量:1
  • 5U. Fayyad, G. Piatetsky - Shapiro and P. Smyth. Knowledge Discovery and Data Mining: Towards a Unifying Framework.Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD- 96), Portland,Oregon, August 2- 4, 1996, AAAI Press. 82- 88. 被引量:1
  • 6L. Yan, D. Miller, M. Mozer and et al. Improving Prediction of Customer Behavior in Nonstationary Environments. IEEE Trans.On Neural Networks, Vol. 11, No.3, 2000. 被引量:1
  • 7SAS Institute. Data Mining and the Case for Sampling. 1995. 被引量:1
  • 8M N O Sadiku. Artificial Intelligence [ J ]. IEEE Potentials, 1989, 8(2) :35 - 39. 被引量:1
  • 9R J Patton, C J Lopez-Toribio, F J Uppal. Artificial intelligence approaches to fault diagnosis[ A]. IEE Colloquium on Condition Monitoring :Machinety, External Structures and Health (Ref. No. 1999/034)[ C]. London:The Institute of Electrical Eagineers, 1999.5/1 - 5/18. 被引量:1
  • 10R Orwig, H Chen, D Vogel, et al. A multi-agent view of strategic planning using group support systems and artificial intelligence [J]. Group Decision and Negotiation, 1997,6( 1 ) : 37 - 59. 被引量:1

共引文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部