期刊文献+

几何模式动态贝叶斯网络推理基因调控网络 被引量:4

Geometric-pattern dynamic Bayesian networks reasoning gene regulatory networks
下载PDF
导出
摘要 针对趋势相关(两基因在其表达水平随时间上升与下降的变化趋势上相关)关系在重建基因调控网络中十分重要却尚未被挖掘利用的问题,提出了几何模式动态贝叶斯网络(Gp-DBN)方法.Gp-DBN将每个基因的表达数据转换为一个几何模式,依据几何模式确定潜在的调控子和调控时滞,并通过推理这些几何模式之间的相关关系来发现基因间的调控关系.该方法解决了挖掘具有趋势相关的基因调控关系的问题,能够很大程度地提高重建的基因调控网络的性能.对Yeast和E. coli基因数据的实验结果表明无论是在无先验知识还是在有先验知识时Gp-DBN重建的基因调控网络的性能都比传统的动态贝叶斯网络方法有大幅度提高. Trend correlations (i. e. , two genes are correlated in their varying trends that rise and descend with time) between genes are very important but usually neglected in reconstruction of gene regulatory networks (GRN). To mine trend correlations to enhance the reconstruction performance of GRN, we propose geometric-pattern dynamic Bayesian networks (Gp-DBN). In Gp-DBN the time series of each gene is transformed to a geometric pattern, by which potential regulators and time lags are estimated, and regulatory relations between genes are discovered by reasoning correlations between these geometric patterns. Gp-DBN realizes the mining of regulatory relations with trend correlations so that it can improve the performance of GRN reconstruction. Experimental results on Yeast and E. coli data sets show that Gp-DBN improves greatly the performance of GRN reconstruction in the cases with/without prior knowledge, compared with traditional dynamic Bayesian networks.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期922-925,943,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60574039 60371044)
关键词 几何模式 动态贝叶斯网络 基因调控网络 geometric pattern dynamic Bayesian networks gene regulatory networks
  • 相关文献

参考文献14

  • 1Friedman N. Inferring Cellular Networks Using Probabilistic Graphical Models [J]. Science, 2004, 303 (5 659) : 799- 805. 被引量:1
  • 2Covert M W, Knight E M, Reed J L, et al. Integrating High-throughput and Computational Data Elucidates Bacterial Networks [J]. Nature, 2004, 429 (6 987) : 92-96. 被引量:1
  • 3Sachs K, Perez O, Pe'er D, et al. Causal Protein-signaling Networks Derived from Multiparameter Single-cell Data [J]. Science, 2005, 308 (5721): 523-529. 被引量:1
  • 4Davidson E H, Erwin D H. Gene Regulatory Networks and the Evolution of Animal Body Plans [J]. Science, 2006, 311 (5762) : 796-797. 被引量:1
  • 5Neapolitan R E. Learning Bayesian Networks[M]. Englewood Cliffs: Prentice Hall, 2003. 被引量:1
  • 6Pena J M, BjAorkegren J, Tegner J. Learning Dynamic Bayesian Network Models Via Cross-Validation [J]. Pattern Recognition Letters, 2005, 26 (14): 2295-2308. 被引量:1
  • 7Friedman N, Linial M, Nachman I Peter D. Using Bayesian Networks to Analyze Expression Data [J]. J Comp Bio, 2000, 7(3): 601-620. 被引量:1
  • 8Kim S Y, Imoto S, Miyano S. Inferring Gene Networks from Time Series Microarray Data Using Dynamic Bayesian Networks [J]. Brief Bioinform, 2003, 4(3) : 228-235. 被引量:1
  • 9Zou M, Conzen S D. A New Dynamic Bayesian Network (DBN) Approach for Identifying Gene Regulatory Networks from Time Course Microarray Data [J]. Bioinformatics, 2005, 21(1) : 71-79. 被引量:1
  • 10Yu H, Luscombe N M, Qian J, et al. Genomic Analysis of Gene Expression Relationships in Transcriptional Regulatory Networks [J]. Trends Genet, 2003, 19(8): 422-427. 被引量:1

共引文献1

同被引文献35

  • 1李伟生,王三民,王宝树.基于计划识别的态势估计方法研究[J].电子与信息学报,2006,28(3):532-536. 被引量:11
  • 2雷英杰,王宝树,王毅.基于直觉模糊决策的战场态势评估方法[J].电子学报,2006,34(12):2175-2179. 被引量:55
  • 3刘家鹏,詹原瑞,刘睿.基于贝叶斯网络的操作风险建模[J].西安电子科技大学学报(社会科学版),2007,17(4):32-39. 被引量:7
  • 4Hall D L, Llinas J. Handbook of Multisensor Data Fusion[M]. Washington: CRC Press, 2001. 被引量:1
  • 5Mahoney S M, Laskey K B. Constructing Situation Specific Belief Networks[EB/OL]. [2008-06-30]. http://ite.gmu. edu/-klaskey/papers/Laskey_ Mahoney_ UAI98. pdf. 被引量:1
  • 6Pearl J. Fusion, Propagation, and Structuring in Belief Networks[J]. Artificial Intelligence, 1986, 29(3) : 241-288. 被引量:1
  • 7Farina L, De Santis A, Salvucci S, et al. Embedding mRNA stability in correlation analysis of time-series gene expression data [J]. PLoS Computational Biology, 2008, 4 (8): e1000141. 被引量:1
  • 8Bickel D R. Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically [J]. Bioinformaties, 2003, 19 (7): 818--824. 被引量:1
  • 9Radde N, Gebert J, Forst C V. Systematic component selection for gene-network refinement [J]. Bioinformatics, 2006, 22 (11): 2674--2680. 被引量:1
  • 10Maharaj E A. Pattern recognition of time series using wavelets [C] //Proceedings in Computational Statistics: 15th Symposium,2002, Berlin (Compstat 2002). Heidelberg: Physiea-verlag, 2002: 497--502. 被引量:1

引证文献4

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部