期刊文献+

基于趋势秩的Spearman相关方法 被引量:27

Spearman Rank Correlation Method Based on Trend Rank
下载PDF
导出
摘要 针对Spearman秩相关方法在两个变量局部数据的大小次序不一致时描述变量间趋势相关性效果不佳的问题,提出了基于趋势秩的Spearman相关方法(T-SRC).T-SRC设计了将数据转换为趋势秩的方法,专门捕获数据的变化趋势,从而提高了Spearman相关方法发现变量间趋势相关的性能.真实数据的实验结果表明,与传统的Spearman秩相关方法相比,T-SRC挖掘变量间的趋势相关关系的性能更优,验证了方法的有效性. The Spearman rank correlation method has poor performance when it is used to find trend correlations between variables, where the local inconsistent ranks appear. The trend-rank Spearman correlation method (T-SRC) is proposed to solve this problem. The method of transforming data to trend ranks is designed especially to catch the changing tendency of data, so that this can enhance the performance of finding trend correlations between variables. The experimental results on real data sets show that the T-SRC has better performance on mining trend correlations between variables, compared with traditional Spearman rank correlation method.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期38-41,共4页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省教育厅资助项目(JA09043)
关键词 Spearman秩相关 趋势秩 趋势相关 Spearman rank correlation trend rank trend correlation
  • 相关文献

参考文献8

  • 1Farina L, De Santis A, Salvucci S, et al. Embedding mRNA stability in correlation analysis of time-series gene expression data [J]. PLoS Computational Biology, 2008, 4 (8): e1000141. 被引量:1
  • 2Bickel D R. Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically [J]. Bioinformaties, 2003, 19 (7): 818--824. 被引量:1
  • 3胡军,张超,陈平雁.非参数双变量相关分析方法Spearman和Kendall的Monte Carlo模拟比较[J].中国卫生统计,2008,25(6):590-591. 被引量:24
  • 4王星编著..非参数统计[M].北京:中国人民大学出版社,2005:308.
  • 5Radde N, Gebert J, Forst C V. Systematic component selection for gene-network refinement [J]. Bioinformatics, 2006, 22 (11): 2674--2680. 被引量:1
  • 6王开军,张军英,赵峰,张宏怡.几何模式动态贝叶斯网络推理基因调控网络[J].西安电子科技大学学报,2007,34(6):922-925. 被引量:4
  • 7龚光鲁编著..概率论与数理统计[M].北京:清华大学出版社,2006:329.
  • 8Maharaj E A. Pattern recognition of time series using wavelets [C] //Proceedings in Computational Statistics: 15th Symposium,2002, Berlin (Compstat 2002). Heidelberg: Physiea-verlag, 2002: 497--502. 被引量:1

二级参考文献19

  • 1Rosner B. Fundamentals of Biostatisties. Belmont: Thomson Brooks/ Cole6th edit, 2006, 540-544. 被引量:1
  • 2Daiel WW. Applied Nonparametric Statistics. 2nd Edit. PWS-KENT Publishing Company, 1990, 365-375. 被引量:1
  • 3Sam Kachigan. Multivariate Statistical Analysis. 2nd Edition. New York: Radius Press, 1991, 142-153. 被引量:1
  • 4Steel RGD, Torrie JH. Principle and procedures of statistics. Megraw-Hill Book Co. Inc. New York, 1960,183-193. 被引量:1
  • 5Fleishman AI. A Method for Simulating Non-Normal Distributions. Psychometrika, 1978, (43) : 521-531. 被引量:1
  • 6陈维恒.微分流形初步[M].北京:高等教育出版社,2001. 被引量:2
  • 7Friedman N. Inferring Cellular Networks Using Probabilistic Graphical Models [J]. Science, 2004, 303 (5 659) : 799- 805. 被引量:1
  • 8Covert M W, Knight E M, Reed J L, et al. Integrating High-throughput and Computational Data Elucidates Bacterial Networks [J]. Nature, 2004, 429 (6 987) : 92-96. 被引量:1
  • 9Sachs K, Perez O, Pe'er D, et al. Causal Protein-signaling Networks Derived from Multiparameter Single-cell Data [J]. Science, 2005, 308 (5721): 523-529. 被引量:1
  • 10Davidson E H, Erwin D H. Gene Regulatory Networks and the Evolution of Animal Body Plans [J]. Science, 2006, 311 (5762) : 796-797. 被引量:1

共引文献26

同被引文献316

引证文献27

二级引证文献218

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部