期刊文献+

微流控免疫芯片快速检测法的建立及其检测TSH和T_4的效果

Rapid detection of TSH and T_4 by microfluidic chip-based immunoassays
下载PDF
导出
摘要 目的 在已制备的微流控芯片系统上建立基于顺磁微球的免疫检测方法,并将此方法用于检测促甲状腺激素(TSH)和甲状腺素(T4)。方法 采用数字激光刻蚀技术制备微流控芯片,以luminol-H2O2为发光体系,用双抗夹心法测定TSH,用免疫竞争法测定T4。结果 该检测系统可以在25min内完成检测,所需的标本和抗体试剂量为10山,TSH检测范围为0~50μIU/ml,批内CV平均为4.9%,批间CV平均为4.9%,平均回收率为93.74%;T4检测范围为9.375~300ng/ml,批内CV平均为4.9%,批间CV平均为4.7%,平均回收率为91.27%。结论 本方法检测TSH和T4具有操作简便、节约时间、节省试剂、稳定性好、准确度高的优点。 Objective To establish an immunoassay based on microfluidic chip for detection of TSH and total T4. Methods The direct-write laser micromachining technology was used to fabricate microfluidic chip, luminol-H2O2 as luminator. This method and Roche E2010 electrochemiluminescence immunoassay were used to examine TSH by double-antibody sandwich method and total T4by competitive principle in 50 serum samples collected at our outpatient clinic. Results The detection was completed within 25 min. Ten microliter sample and reagent was required. The detection range of TSH was 0 - 50 la, IU/ml and its average intraassay and interassay precision was 4.7% and 4.6% respectively and its average recovery rate was 95.3%. The detection range of T4 was 9.375 -300 ng/ml, and its average intraassay and interassay precision was 4.9% and 4.7% respectively and its average recovery rate was 91.27%. Conclusion Rapid detection of TSH and T4 by microfluidic chip-based immunoassays is convenient, stable and accurate and of less reagent and time consuming.
出处 《第三军医大学学报》 CAS CSCD 北大核心 2007年第23期2254-2256,共3页 Journal of Third Military Medical University
关键词 微流控芯片 免疫顺磁微球 化学发光 microfluidic chip immunoassay magnetic microbead chemiluminescence
  • 相关文献

参考文献4

二级参考文献18

  • 1Zhou SM,Kilgo MM,Williams C.Generation of large area microscale manifolds using excimer laser ablation.SPIE,1999;3877(9):240. 被引量:1
  • 2Mullenborn M,Dirac H,Petersen JW,et al.Fast three-dimensional laser micromachining of silicon for microsystems.Sensors and Actuators A, 1996; 52:121. 被引量:1
  • 3Nadeem HR,Phil TR,Malcolm, et al.Direct manufacture of miniature bio-particle electro-manipulator device using excimer laser mask projection techniques.Japan Soc Prec Eng,1999;33(2):100. 被引量:1
  • 4David JO, Michael JR.Laser-guided direct writing for applications in biotechnology.Nanotechnology,1999;17(10):385. 被引量:1
  • 5Martin PM,Matson DW,Bennett WD,et al.Fabrication of plastic microfluidic components.SPIE, 1998;3515(9):172. 被引量:1
  • 6ZHANG Z L,CROZATIER C,LE-BERRE M,et al.In situ bio-functionalization and cell adhesion in microfluidic devices[J].Microelectron Eng,2005,78-79:556-562. 被引量:1
  • 7DU Z,COLLS N,CHENG K H,et al.Microfluidic-based diagnostics for cervical cancer cells[J].Biosens Bioelectron,2006,21 (10):1991-1995. 被引量:1
  • 8HIRASAWA M,SHIJUBO N,UEDE T,et al.Integrin expression and ability to adhere to extracellular matrix proteins and endothelial cells in human lung cancer lines[J].Br J Cancer,1994,70 (3):466-473. 被引量:1
  • 9FALCIONI R,CIMINO L,GENTILESCHI M P,et al.Expression of β1,β3,β4,and β5 integrins by human lung carcinoma cells of different histotypes[J].Exp Cell Res,1994,210 (1):113-122. 被引量:1
  • 10PANARO N J,LOU X J,FORTINA P,et al.Micropillar array chip for integrated white blood cell isolation and PCR[J].Biomol Eng,2005,21(6):157 -162. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部