期刊文献+

基于先验知识和BP网络的隧道爆破参数计算 被引量:5

Calculation of Tunnel Blasting Parameters Based on Prior Knowledge and BP Neural Network
下载PDF
导出
摘要 为克服当前隧道爆破参数选取受人为因素影响的不足,以围岩普氏系数、隧道断面积、实际进尺和炮孔直径等为网络输入参数,以设计进尺、炸药单耗、周边孔距和掘进孔孔距等为网络输出参数,建立了含输入层、输出层和隐含层的神经网络模型,并给出了模型学习算法,提出了基于爆破先验知识的可加快模型求解收敛速度的网络学习约束条件.隧道爆破参数的实例计算结果表明,给出的网络模型及其算法能在借鉴已有爆破资料的基础上准确、快速计算爆破参数,并且获得理想的爆破效果. To overcome the shortcoming of the parameter design of tunnel blasting, i. e. , they are selected empirically by designers, a three-layer neural network model with an input layer, an output layer and a hidden layer was constructed. The Protodikonov's hardness coefficient, tunnel cross-section area, practical advance per round, blast-hole diameter and others are considered as the input parameters of a BP network, and the designed advance per round, powder factor, contour hole spacing, reliever-hole spacing and excavated-hole spacing as the output parameters. A algorithm for the neural network model was given, and the restrain conditions of network study were proposed on the basis of blasting prior knowledge, so solving of the model can be accelerated. The calculating results for a practical example of tunnel blasting design show that with the help of the neural network model and the algorithm, the parameters of tunnel blasting may be calculated accurately and quickly by using the existed blasting data, so an optimal blasting effect can be obtained.
出处 《西南交通大学学报》 EI CSCD 北大核心 2007年第5期537-541,共5页 Journal of Southwest Jiaotong University
基金 铁道部科技研究开发计划课题资助项目(2004G038)
关键词 隧道工程 爆破参数计算 先验知识 BP神经网络 tunnel engineering calculation of blasting parameter prior knowledge BP neural network
  • 相关文献

参考文献13

  • 1OUCHTERLONY F.Some recent research and developments in Swedish tunnel blasting[J].Explosion and Explosives,1992,53(4):165-180. 被引量:1
  • 2SINGH S P.New trends in drilling and blasting technology[J].International Journal of Surface Mining,2000,14 (4):305-315. 被引量:1
  • 3WHITE T J,FARNFIELD R A.Computers and blasting[J].Transactions of the Institution of Mining & Metallurgy,Section A:Mining Industry,1993,102:A19-A24. 被引量:1
  • 4HENDLER J,TATE A,DRUMMOND M.AI (artificial intelligence) planning systems and techniques[J].AI (Artificial Intelligence) Magazine,1990,11(2):61-77. 被引量:1
  • 5JONG Y H,LEE C I.Influence of geological conditions on the powder factor for tunnel blasting[J].International Journal of Rock Mechanics and Mining Sciences,2004,42(Sup.1):1-7. 被引量:1
  • 6JONG Y H,LEE C I.Application of neural networks to prediction of powder factor and peak particle velocity in tunnel blasting[C] //Proceedings of the Annual Conference on Explosives and Blasting Technique(Ⅱ).Las Vegas:International Society of Explosives Engineers,2002:67-76. 被引量:1
  • 7LEU Sousen,LIN S F,CHEN C K,et al.Analysis of powder factors for tunnel blasting using neural networks[J].International Journal for Blasting and Fragmentation,1998,2(4):433-448. 被引量:1
  • 8LI Xiaohong,WANG Xinfei,DONG Yongkang,et al.An expert system based on BP neural networks for pre-splitting blasting design[C]//Lecture Notes in Computer Science.Heidelberg:Springer Verlag Heidelberg,2006:1 237-1 241. 被引量:1
  • 9靳番.神经计算智能基础原理·方法[M].成都:西南交通大学出版社,2000:123-136. 被引量:2
  • 10张立明编著..人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993:237.

二级参考文献12

共引文献47

同被引文献167

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部