期刊文献+

保特征的网格光顺算法 被引量:2

Mesh Smoothing Algorithm with Feature Preserving
下载PDF
导出
摘要 提出了一种保特征的网格光顺算法,能够在快速地去除噪声的同时,保持网格模型的结构特征。该算法对网格中每个三角形的法矢进行光顺,同时求得顶点的法矢。根据当前点到邻接点的距离以及当前点的法矢与邻接点的法矢的夹角对顶点移动的方向进行调整,使顶点分布更加均匀。利用高斯函数求得光顺权值。实验结果证明,该算法能够有效地保持网格模型的结构特征,同时具有迭代次数少、体积收缩小、执行效率高的特点。 This paper proposes an efficient mesh smoothing method. The method can smooth mesh fast, while preserving features. It smoothes the normal of every triangle in the mesh and ges the normal of every point in the mesh after normal smoothing, improves the moving direction of the vertices according to the distances between current vertex and adjacent vertices, and the angles between the normal of current vertex and of adjacent vertices, gets the weight of each vertex in the iteration using Gaussian. It provides a series of examples to demonstrate the effectiveness of the method presented with less iteration and volume shrinkage.
作者 董洪伟 石坚
出处 《计算机工程》 CAS CSCD 北大核心 2007年第21期229-231,共3页 Computer Engineering
关键词 网格光顺 高斯函数 特征保持 mesh smoothing Gaussian kernel, feature preserving
  • 相关文献

参考文献11

  • 1Taubin G.A Signal Processing Approach to Fair Surface Design[C]// Proceedings of ACM SIGGRAPH'95,Los Angeles,California,USA.1995:351-358. 被引量:1
  • 2Desbrun M,Meyer M,Schroder P.Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow[C]//Proceedings of ACM SIGGRAPH'99,Los Angeles,California,USA.1999:317-324. 被引量:1
  • 3Taubin G.Geometric Signal Processing on Polygonal Meshes[C]// Proceedings of EUROGRAPHICS'00,Interlaken,Switzerland.2000. 被引量:1
  • 4Guo-FeiHu,Qun-ShengPeng,A.R.Forrest.Robust Mesh Smoothing[J].Journal of Computer Science & Technology,2004,19(4):521-528. 被引量:6
  • 5Ohtake Y,Belyaev A G,Bogaevski I A.Polyhedral Smoothing with Simultaneously Mesh Regularization[C]//Proceedings of Geometric Modeling and Processing,Hong Kong,China.2000:229-237. 被引量:1
  • 6Clearenz U,Diewald U,Trumpf M.Anisotropic Geometric Diffusion in Surface Processing[C]//Proceedings of IEEE Visualization'00,Salt Lake City,Utah,USA.2000:397-405. 被引量:1
  • 7Desbrun M,Meyer M,Schroder P.Anisotropic Feature-preserving Denoising of Height Fields Bivariate Data[C]//Proceedings of Graphics Interface,Montréal,Québec,Canada.2000:145-152. 被引量:1
  • 8Xu Guoliang.Surface Fairing and Featuring by Mean Curvature Motions[J].Journal of Computational and Applied Mathematics,2004,163(1):295-309. 被引量:1
  • 9Fleishman S,Drori I,Cohen-or D.Bilateral Mesh Denoising[J].ACM Transactions on Graphics,2003,22(3):950-953. 被引量:1
  • 10Peng Jianbo,Strela V,Zorin D.A Simple Algorithm for Surface Denoising[C]//Proceedings of IEEE Visualization'01,San Diego,California,USA.2001:107-112. 被引量:1

二级参考文献17

  • 1Taubin G. A signal processing approach to fair surface design. In Proc.SIGGRAPH95, Los Angeles, 1995,pp.351-358. 被引量:1
  • 2Vollmer J, Mencl R, Muller H. Improved Laplacian smoothing of noisy surface meshes. Computer Graphics Forum, 1999, 18(3): 131-138. 被引量:1
  • 3Pinkall U, Polthier K. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics,1993, 2(1): 15-36. 被引量:1
  • 4Desbrun M, Meyer M, Schroder P, Barr A H. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH99, Los Angeles, 1999, 2(1):317-324. 被引量:1
  • 5Ohtake Y, Belyaev A, Bogaevski I. Mesh regularization and adaptive smoothing. Computer-Aided Design,2001, 33: 789-800. 被引量:1
  • 6Clarenz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing. In Proc. IEEE Visualization 2000, Salt Lake City, 2000, pp.397-405. 被引量:1
  • 7Tasdizen T, Whitaker R, Burchard P, Osher S. Geometric surface smoothing via anisot'ropic diffusion of normals. In Proc. IEEE Visualization 2002, Boston, 2002,pp.125-132. 被引量:1
  • 8Bajaj C, Xu G. Anisotropic diffusion on surfaces and functions on surfaces. ACM Trans. Graphics, 2003,22(1): 4-32. 被引量:1
  • 9Peng J, Strela V, Zorin D. A simple algorithm for surface denoising. In Proc. IEEE Visualization 2001, San Diego, 2001, pp.107-112. 被引量:1
  • 10Pauly M, Gross M. Spectral processing of point-sampled geometry. In Proc.SIGGRAPH01, Los Angeles, 2001,pp.379-386. 被引量:1

共引文献5

同被引文献16

  • 1赵欢喜,徐国良.用反调和平均曲率流实现网格保特征平滑[J].计算机辅助设计与图形学学报,2006,18(3):325-330. 被引量:3
  • 2尹旺中,周来水,神会存,安鲁陵.基于三角片法矢调整的三角网格模型光顺[J].机械科学与技术,2006,25(4):410-414. 被引量:6
  • 3神会存,周来水.基于离散曲率计算的三角网格模型优化调整[J].航空学报,2006,27(2):318-324. 被引量:13
  • 4Sorkine O. Differential Representations for Mesh Processing [ J ]. Computer Graphics Forum, 2006, 25(4) :789-807. 被引量:1
  • 5Yu Yizhou,Zhou Kun. Mesh Editing with Poisson-based Gradient Field Manipulation [ Jl. ACM Transactions on Graphics, 2004,23 ( 3 ) : 644-651. 被引量:1
  • 6Au Kin-Chung,Tai Chiew-Lan, Fu Hongbo, et al. Mesh Editing with Curvature Flow Laplacian [ C 1// Proceedings of Eurographics Symposium on Geometry Processing. Vienna,Austria: [ s. n. ] ,2005 : 191-199. 被引量:1
  • 7Eigensatz M, Sumner R W, Pauly M. Curvature-domain Shape Processing [ J 1 Computer Graphics Forum, 2008, 27(10) :241-250. 被引量:1
  • 8Guskov I, Sweldens W, Schr der P. Multiresolution Signal Processing for Meshes [ C ]//Proceedings of SIGGRAPH' 99. New York, USA: ACM Press, 1999: 325-334. 被引量:1
  • 9Sorkine O, Cohen-Or D. Least-squares Meshes [ C ]// Proceedings of 2004 Shape Modeling Applications Conference. Washington D. C. , USA : IEEE Press, 2004 : 191-199. 被引量:1
  • 10Sorkine O, Cohen-Or D. Geometry-aware Bases for Shape Approximation [ J ]. IEEE Transactions on Visualization and Computer Graphics, 2005, 11 ( 2 ) : 171-180. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部