期刊文献+

Digital Differential Geometry Processing 被引量:2

Digital Differential Geometry Processing
原文传递
导出
摘要 The theory and methods of digital geometry processing has been research area in computer graphics, as geometric models serves as the core data for 3D graphics applications. The purpose of this paper is to introduce some recent advances in digital geometry processing, particularly mesh fairing, surface parameterization and mesh editing, that heavily use differential geometry quantities. Some related concepts from differential geometry, such as normal, curvature, gradient, Laplacian and their counterparts on digital geometry are also reviewed for understanding the strength and weakness of various digital geometry processing methods. The theory and methods of digital geometry processing has been research area in computer graphics, as geometric models serves as the core data for 3D graphics applications. The purpose of this paper is to introduce some recent advances in digital geometry processing, particularly mesh fairing, surface parameterization and mesh editing, that heavily use differential geometry quantities. Some related concepts from differential geometry, such as normal, curvature, gradient, Laplacian and their counterparts on digital geometry are also reviewed for understanding the strength and weakness of various digital geometry processing methods.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2006年第5期847-860,共14页 计算机科学技术学报(英文版)
基金 The research work of this paper is supported by the National Natural Science Foundation of China under Grant No. 60021201 the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China under Grant No. 705027 and the National Grand Fundamental Research 973 Program of China under Grant No. 2002CB312101.
关键词 digital geometry geometric algorithm mesh editing LAPLACIAN PARAMETERIZATION digital geometry, geometric algorithm, mesh editing, Laplacian, parameterization
  • 相关文献

参考文献1

二级参考文献17

  • 1Taubin G. A signal processing approach to fair surface design. In Proc.SIGGRAPH95, Los Angeles, 1995,pp.351-358. 被引量:1
  • 2Vollmer J, Mencl R, Muller H. Improved Laplacian smoothing of noisy surface meshes. Computer Graphics Forum, 1999, 18(3): 131-138. 被引量:1
  • 3Pinkall U, Polthier K. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics,1993, 2(1): 15-36. 被引量:1
  • 4Desbrun M, Meyer M, Schroder P, Barr A H. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH99, Los Angeles, 1999, 2(1):317-324. 被引量:1
  • 5Ohtake Y, Belyaev A, Bogaevski I. Mesh regularization and adaptive smoothing. Computer-Aided Design,2001, 33: 789-800. 被引量:1
  • 6Clarenz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing. In Proc. IEEE Visualization 2000, Salt Lake City, 2000, pp.397-405. 被引量:1
  • 7Tasdizen T, Whitaker R, Burchard P, Osher S. Geometric surface smoothing via anisot'ropic diffusion of normals. In Proc. IEEE Visualization 2002, Boston, 2002,pp.125-132. 被引量:1
  • 8Bajaj C, Xu G. Anisotropic diffusion on surfaces and functions on surfaces. ACM Trans. Graphics, 2003,22(1): 4-32. 被引量:1
  • 9Peng J, Strela V, Zorin D. A simple algorithm for surface denoising. In Proc. IEEE Visualization 2001, San Diego, 2001, pp.107-112. 被引量:1
  • 10Pauly M, Gross M. Spectral processing of point-sampled geometry. In Proc.SIGGRAPH01, Los Angeles, 2001,pp.379-386. 被引量:1

共引文献5

同被引文献3

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部