摘要
代数A称为不可分解的,如果A不能分解成理想的直和.文中将证明满足C(L_■)= C(L)={0}的限制李超代数能够分解成不可分解限制理想的直和,这种分解在不计理想次序的前提下是唯一的.而且还证明了限制李超代数的一些结果.
An algebra A is called indecomposable if A can not be decomposed into the direct sum of ideals of A. In the present paper, the authors will prove that a restricted Lie superalgebra satisfying C(L0) = C(L) = {0} can be decomposed into direct sum of indecomposable restricted ideals and this decomposition is unique up to the order of the ideals. Moreover, they announce some results of restricted Lie superalgebras.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2007年第4期577-583,共7页
Acta Mathematica Scientia
基金
国家自然科学基金(10626011)资助
关键词
限制李超代数
L的L-自同态
不可分解李超代数
分解的唯一性
Restricted Lie superalgebras
L-endomorphisms of L
Indecomposable Lie superalgebras
Uniqueness of the decomposition.