期刊文献+

有理二次插值曲线的形状控制 被引量:2

Shape control of rational quadratic interpolating curve
下载PDF
导出
摘要 将插值曲线约束于给定的区域之内是曲线形状控制中的重要问题。构造了一种分母为二次的连续有理二次插值函数,这种有理二次插值函数中含有参数,因而给约束控制带来了方便。同时可以通过对参数的控制实现连续的插值。给出了将该种插值曲线约束于给定的折线、二次曲线之上、之下或之间的充分条件及将其约束于给定折线之上、之下或之间的充分必要条件。 To constrain the interpolating curves to be bounded in the given region is an important problem in curve design.A rational quadratic interpolation function with quadratic denominators has been constructed.The sufficient conditions for the interpolating curves to be above,below or between the given broken lines or piecewise quadratic curves and the sufficient and necessary conditions for the interpolating curves to be above,below or between the given broken lines have been derived.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第29期40-42,62,共4页 Computer Engineering and Applications
基金 国家自然科学基金( the National Natural Science Foundation of China under Grant No.20206033) 湖南省自然科学基金( the Natural Science Foundation of Hunan Province of China under Grant No.06JJ4073) 湖南省教育厅资助科研课题( the Research Project of De- partment of Education of Hunan Province China under Grant No.06C791) 长沙市高新技术项目( No.K051127- 72)
关键词 计算机应用 曲线设计 有理插值 形状控制 computer application curve design rational interpolation shape control
  • 相关文献

参考文献16

  • 1Barsky B A.The β-spline:a Local representation based on shape parameters and fundamental geometric measure[D].Salt Lake:University of Utah,1981. 被引量:1
  • 2Dierck P,Tytgat B.Generating the Bézier point of β-spline curve[J].Computer Aided Geometric Design,1989,6(2):279-291. 被引量:1
  • 3Foley T A.Local control of interval tension using weighted splines[J].Computer Aided Geometric Design,1986,3 (2):281-294. 被引量:1
  • 4Nielson G M.Rectangular v-splines[J].IEEE Computer Graphics and Application,1986,6(1):35-40. 被引量:1
  • 5Nielson G M.CAGD's top ten:what to watch[J].IEEE Computer Graphics and Application,1993,13(1):35-37. 被引量:1
  • 6Piegl L.On NURBS:a survey[J].IEEE Computer Graphics and Application,1991,11 (5):55-71. 被引量:1
  • 7Schmidt J W,HeB W.Positivity of cubic polynomials on intervals and positive spline interpolation[J].BIT,1988,28(2):340-352. 被引量:1
  • 8Gregory J A,Sarfraz M,Yueu P K.Interactive curve design using C2 rational splines[J].Computer and Graphics,1994,18(2):153-159. 被引量:1
  • 9Sarfraz M.Cubic spline curves with shape control[J].Computer and Graphics,1994,18 (5):707-713. 被引量:1
  • 10Duan Qi,Liu Aikui,Cheng Fuhua.Constrained interpolation using rational cubic spline with linear denominators[J].Korean Journal of computational and Applied Mathematics,1999,6(1):203-215. 被引量:1

二级参考文献17

  • 1Duan Qi,Computer Graphics,1998年,22卷,4期,478页 被引量:1
  • 2Barsky B A.The β-spline:A local representation based on shape parameters and fundamental geometric measure[D].Salt Lake:University of Utah,1981. 被引量:1
  • 3Dierck P,Tytgat B.Generating the Bézier point of β-spline curve[J].Computer Aided Geometric Design,1989,6(2):279-291. 被引量:1
  • 4Foley T A.Local control of interval tension using weighted splines[J].Computer Aided Geometric Design,1986,3(2):281-294. 被引量:1
  • 5Nielson G M.Rectangular u-splines[J].IEEE Computer Graphics and Application,1986,6(1):35-40. 被引量:1
  • 6Nielson G M.CAGD's Top Ten:What to watch[J].IEEE Computer Graphics and Application,1993,13(1):35-37. 被引量:1
  • 7Piegl L.On NURBS:A survey[J].IEEE Computer Graphics andApplication,1991,11(5):55-71. 被引量:1
  • 8Schmidt J W,HeB W.Positivity of cubic polynomials on intervals and positive spline interpolation[J].BIT,1988,28(2):340-352. 被引量:1
  • 9Gregory J A,Sarfraz M,Yuen P K.Interactive curve design using C2 rational splines[J].Computer and Graphics,1994,18(2):153-159. 被引量:1
  • 10Sarfraz M.Cubic spline curves with shape control[J].Computer and Graphics,1994,18(5):707-713. 被引量:1

共引文献31

同被引文献21

  • 1谢楠,张晓平.一类有理三次样条的区域控制和逼近性质[J].山东大学学报(工学版),2004,34(6):106-111. 被引量:8
  • 2张希华,包芳勋,刘爱奎,段奇.一种有理插值曲线的保凸控制问题[J].工程图学学报,2005,26(2):77-82. 被引量:8
  • 3Boehm W,Farin G,Kahamann J.A survey of curve and surface methods[J].Computer Aided Geometric Design, 1984,1 ( 1 ) : 1-60. 被引量:1
  • 4Nielson G M.CAGD'S top ten:What to watch[J].IEEE Computer Graphics and Application, 1993,13 ( 1 ) : 35-37. 被引量:1
  • 5Piegl L.On NURBS:A survey[J].IEEE Computer Graphics and Application, 1991,11(5):55-71. 被引量:1
  • 6Barsky B A.The fl-spline: A local representation based on shape parameters and fundamental geometric measure[D].Salt Lake:University of Utah,1981. 被引量:1
  • 7Dierck P,Tytgat B.Generating the Bezier point of β-spline curve[J]. Computer Aided Geometric Design, 1989,6(2) :279-291. 被引量:1
  • 8Foley T A.Local control of interval tension using weighted splines[J]. Computer Aided Geometric Design, 1986,3(2) :281-294. 被引量:1
  • 9Nielson G M.Rectangular v-splines[J].IEEE Computer Graphics and Application, 1986,6( 1 ) :35-40. 被引量:1
  • 10Sarfraz M,Interpolatory rational cubic spline with biased point and interval tension[J].Computer and Graphics, 1992,16(4) :427-430. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部