期刊文献+

一种基于函数值的二元有理插值函数及其性质 被引量:6

A BIVARIATE RATIONAL INTERPOLATION BASED ON FUNCTION VALUES AND THE PROPERTIES
原文传递
导出
摘要 利用带参数的仅以被插函数的函数值作为插值条件的一元有理插值方法,构造了一种分母为双二次的仅基于函数值的二元有理双三次插值函数,插值函数具有简洁的显示表示.插值函数中含有四个参数,当这些参数满足一定条件时,插值曲面在插值区域上C^1光滑.由于插值函数中含有参数,这样可以在插值数据不变的情况下通过对参数的选择进行插值曲面的局部修改.最后讨论了插值函数的一些性质. A bivariate rational bicubic interpolating spline based on function values with four parameters is constructed, and this spline is with bicubic numerator and biquadratic denominator. The interpolation function has a simple and explicit mathematical representation. The interpolating surface is C^1 in the interpolating region when two parameters satisfy a simple condition, and the interpolating surface can be modified by selecting suitable parameters under the condition that the interpolating data are not changed. Some properties of the interpolation are derived.
出处 《计算数学》 CSCD 北大核心 2009年第1期77-86,共10页 Mathematica Numerica Sinica
基金 国家自然科学基金资助项目(60773110) 湖南省自然科学基金资助项目(06JJY4073) 湖南省教育厅科研资助项目(06C791) 湖南省科技计划项目(2008FJ3046) 安徽省教育厅自然科研项目(KJ2008B250) 湖南省重点学科建设项目资助 湖南省高校科技创新团队支持计划资助.
关键词 计算机应用 二元插值 有理样条 曲面设计 computer application bivariate interpolation rational interpolation surface design
  • 相关文献

参考文献17

  • 1Farin G. Curves and surfaces for computer aided geometric design: A practical guide[M]. Academic press, 1988. 被引量:1
  • 2Chui C K. Multivariate spline. SIAM, 1988. 被引量:1
  • 3Bezier P E. The mathematical basis of the UNISURF CAD system. Butterworth, London, 1986. 被引量:1
  • 4Dierck P, Tytgat B. Generating the Bezier points of β-spline curve[J]. Computer Aided Geometric Design, 1989, 6(2): 279-291. 被引量:1
  • 5Piegl L. On NURBS: A survey[J]. IEEE Computer Graphics and Application, 1991, 11(5): 55-71. 被引量:1
  • 6Nielson G M. CAGD's Top Ten: What to watch[C]. IEEE Computer Graphics and Automation, 1993, 35-37. 被引量:1
  • 7Kouichi K, Hiroaki C. An approach of designing and controlling free-form surfaces by using NURBS boundary Gregory patches[J]. Computer Aided Geometric Design, 1996, 13(4): 825-849. 被引量:1
  • 8Laurie M W. First and second contributions to surface interpolation[J]. Vision Research, 1999, 39: 2335-2347. 被引量:1
  • 9Lin R S. Real-time surface interpolator for 3-D parametric surface machining on 3-axis machine tools[J]. Machine tools and Manufacture, 2000, 40: 1513-1526. 被引量:1
  • 10Jiang D H, Liu H N, Wang W G. Test a modified surface wind interpolation scheme for complex terrain in a stable atmosphere[J]. Atmospheric Environment, 2001, 35: 4877-4885. 被引量:1

二级参考文献14

  • 1Barsky B A.The β-spline:A local representation based on shape parameters and fundamental geometric measure[D].Salt Lake:University of Utah,1981. 被引量:1
  • 2Dierck P,Tytgat B.Generating the Bézier point of β-spline curve[J].Computer Aided Geometric Design,1989,6(2):279-291. 被引量:1
  • 3Foley T A.Local control of interval tension using weighted splines[J].Computer Aided Geometric Design,1986,3(2):281-294. 被引量:1
  • 4Nielson G M.Rectangular u-splines[J].IEEE Computer Graphics and Application,1986,6(1):35-40. 被引量:1
  • 5Nielson G M.CAGD's Top Ten:What to watch[J].IEEE Computer Graphics and Application,1993,13(1):35-37. 被引量:1
  • 6Piegl L.On NURBS:A survey[J].IEEE Computer Graphics andApplication,1991,11(5):55-71. 被引量:1
  • 7Schmidt J W,HeB W.Positivity of cubic polynomials on intervals and positive spline interpolation[J].BIT,1988,28(2):340-352. 被引量:1
  • 8Gregory J A,Sarfraz M,Yuen P K.Interactive curve design using C2 rational splines[J].Computer and Graphics,1994,18(2):153-159. 被引量:1
  • 9Sarfraz M.Cubic spline curves with shape control[J].Computer and Graphics,1994,18(5):707-713. 被引量:1
  • 10Duan Qi,Liu Aikui,Cheng Fuhua (Frank).Constrained interpolation using rational cubic spline with linear denominators[J].Korean Journal of Computational and Applied Mathematics,1999,6(1):203-215. 被引量:1

共引文献18

同被引文献75

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部