期刊文献+

一种改进的近似支持向量机算法 被引量:1

Robust proximal support vector machine
下载PDF
导出
摘要 标准近似支持向量机受类别差异影响和噪声、野值数据干扰较重,使得分类能力不高.提出一种改进的近似支持向量机算法——加权近似支持向量机,通过为不同类别设定不同的惩罚参数和为每个样本引入模糊隶属值,有效补偿类别差异带来的倾向性并去除噪声和野值数据的影响.模糊隶属函数的选取采用样本与类中心的距离和样本紧密度的加权平均值计算,以有效去除噪声和野值数据的干扰.经过分析,改进后的算法可近似归结为一种岭回归模型.实验表明,与标准近似支持向量机相比,该算法有更好的分类能力. Since proximal support vector machine (PSVM) is susceptible to uneven class sizes and is sensitive to outliers and noises in the training set, a robust PSVM was proposed. By imposing fuzzy memberships to each data point and introducing different error penalties for different classes, the robustness of PSVM was greatly enhanced. Both the affinity among samples and the relation between a sample and its class center were considered when calculating fuzzy memberships. Moreover, the similarity between the algorithm and ridge regression model was well demonstrated. Experiment results show that the robust PSVM has demonstrated enhanced classification ability.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第9期1090-1093,共4页 Journal of Beijing University of Aeronautics and Astronautics
关键词 分类 支持向量机 类别差异 模糊隶属值 classification support vector machine uneven class sizes fuzzy memberships
  • 相关文献

参考文献6

  • 1邓乃扬,田英杰著..数据挖掘中的新方法 支持向量机[M].北京:科学出版社,2004:408.
  • 2Fung G, Mangasarian O L. Proximal support vector machine classifiers[ C]. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York :ACM ,2001:77 - 86. 被引量:1
  • 3Chew H G, Bogner R E, Lim C C. Dual v-support vector machine with error rate and training size biasing [ C ].ICASSP IEEE Int Conf Acoust Speech Signal Process Proc. Piscataway, NJ : IEEE ,2001,2 : 1269 - 1272. 被引量:1
  • 4Lin Chunfu, Wang Shengde. Fuzzy support vector machines [ J]. IEEE Transactions on Neural Networks, 2002, 13 (2) : 464 - 471. 被引量:1
  • 5范昕炜,杜树新,吴铁军.可补偿类别差异的加权支持向量机算法[J].中国图象图形学报(A辑),2003,8(9):1037-1042. 被引量:26
  • 6张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84

二级参考文献12

  • 1[1]Vapnik V. The nature of statistical learning theory[M]. New York : Springer-Verlag, 1995. 被引量:1
  • 2[2]Joachims T. Text categorization with support vector machines[R]. Technical Report, LS Ⅷ Number 23, University of Dortmund, German, 1997. 被引量:1
  • 3[3]Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: An application to face detection[A]. In: IEEE Conference on Computer Vision and Pattern Recognition [C],Puerto Rico, 1997: 130~136. 被引量:1
  • 4[4]Schmidt M. Identifying speaker with support vector networks[A]. In: Interface'96 Proceedings [C], Sydney, Australia,1996. 被引量:1
  • 5[5]Cai Yu-Dong, Liu Xiao-Jun, Xu Xue-biao et al. Prediction of protein structural classes by support vector machines [J].Computers and Chemistry, 2002,26 (3): 293 ~ 296. 被引量:1
  • 6[6]Chew Hong-Gunn, Crisp D J, Bogner R E et al. Target detection in radar imagery using support vector machines with training size biasing [A]. In: Proceedings of the Sixth International Conference on Control, Automation, Robotics and Vision[C], Singapore, 2000. 被引量:1
  • 7[7]Chew Hong-Gunn, Bogner Robert E, Lim Cheng-Chew. Dual nu-support vector machine with error rate and training size biasing[A]. In:Proceedings of 26th IEEE ICASSP(International Conference on Acoustics, Speech, and Signal Processing) 2001[C], Salt Lake City, UT,USA, 2001: 1269~1272. 被引量:1
  • 8[8]Scholkopf B, Smola A, Williamson R C et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207~ 1245. 被引量:1
  • 9[9]Lin Chun-Fu, Wang Sheng-De. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464~471. 被引量:1
  • 10[10]Chang Chih-Chung, Lin Chih-Jen. Training nu-support vector classifiers: theory and algorithms [J]. Neural Computation,2001, 13(9): 2119~2147. 被引量:1

共引文献103

同被引文献8

  • 1Vapnik V N. Statistical learning theory [ M ]. New York : Wiley, 1998. 被引量:1
  • 2Yang Chanyun, Yang J Y, Wang Jianjun. Margin calibration in SVM class-imbalanced learning [ J ]. Neurocomputing,2009,73 (13) :397-411. 被引量:1
  • 3Yeom H G, Jang I H, Sim K B. Variance considered machines: modification of optimal hyperplanes in support vector machines [ C ]// IEEE International Symposium on Industrial Electronics. Seoul : IEEE ,2009 : 1144-1147. 被引量:1
  • 4Enrico F, Marco M. Implementing reliable learning through relia- ble support vector machines [ C ]//Proceedings 2011 IEEE Sym- posium on Foundations of Computational Intelligence. Paris: IEEE ,2011 : 100-106. 被引量:1
  • 5Zhao Xing,Zhou Yanquan, He Huacan. Researches on algorithm for confidence evaluation and decision modification of SVM [ C ]// International Conference on Natural Language Processing and Knowledge Engineering. Dalian : NLPKE ,2009 : 1-7. 被引量:1
  • 6Fung G, Mangasarian 0 L. Proximal support vector machine clas- sifiers [ C ] // Proceedings of the Seventh ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining. New York:ACM ,2001:77-86. 被引量:1
  • 7Hao Peiyi. New support vector algorithms with parametric insensi- tive/margin model [ J]. Neural Networks ,2010,23 ( 1 ) :60-73. 被引量:1
  • 8周皓,李少洪.SVM最优分类面相对位置的修正[J].北京航空航天大学学报,2009,35(11):1302-1305. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部