期刊文献+

基于模糊域和支持向量机的故障诊断方法 被引量:2

The fault diagnosis method based on ambiguity domain and support vector machine
下载PDF
导出
摘要 将模糊域分布和支持向量机相结合,提出了一种故障诊断的新方法,该方法将模糊域分布中的局部能量作为特征输入到支持向量机的多故障分类器进行故障识别.利用模糊域分布可以很好地刻画信号的时频局部化特征,与时-频平面特征提取相比,又可大大降低数据维数.对于不同类型的核函数分布,将其诊断结果进行比较,试验结果表明,基于模糊域的支持向量机故障分类无需核函数滤波就能取得最好的分类效果. By combining ambiguity domain with support vector machine(SVM), a now method of fault diagnosis is presented. The proposed method used the local energy in ambiguity domain as a feature vector to input the SVM classifier to identify faults. The local information of signal can be ftdly reflected by using ambiguity domain distribution. Compared with the feature extracted from the time-frequency plane, the dimensions of feature vector can be greatly reduced. The recognition results are analyzed for different kernel functions. The experiment results show that the best classified efficiency can be obtained without any kernel function in ambiguity domain.
出处 《山东大学学报(工学版)》 CAS 2006年第6期116-120,共5页 Journal of Shandong University(Engineering Science)
基金 河南省杰出人才创新基金(No.0621000500) 国家自然科学基金(No.50675209) 河南省教育厅自然科学基金资助项目(No.2006460005)
关键词 模糊域 支持向量机 核函数 故障诊断 ambiguity domain support vector machine(SVM) kernel function fault diagnosis
  • 相关文献

参考文献7

二级参考文献19

  • 1. 被引量:1
  • 2Bennett K P,Blue J A. A support vector machine approach to decision trees. Department of Mathematical Sciences Math Report No. 97-100,Troy,New York: Rensselaer Polytechnic Institute,1997. http://www.math. rpi. edu/~ bennek. 被引量:1
  • 3Weston J,Watkins C. Multi-class support vector machines. Technical Report CSD-TR-98-04,London: Dept. of Computer Science,University of London,1998. 1 ~ 10. 被引量:1
  • 4HE ZhengJia,CI YanYang,MENG QingFeng,et al. Fault diagnosis principles of non-stationary signal and applications to mechanical equipment. Beijing:Higher Education Press,2001.95-105(h Chinese)(何正嘉,訾艳阳,孟庆丰,等.机械设备非平稳信号的故障诊断原理及应用.北京:高等教育出版社,2001.95-105). 被引量:1
  • 5Vapnik V. The nature of statistical learning theory. New York:Spring-Verlag,1995. 被引量:1
  • 6Christopher J C Burges. A Tutorial on support vector machine for pattern recognition. Data Mining and Knowledge Discovery,1998,2:121 ~ 167. 被引量:1
  • 7Steve R Gunn. Support vector machines for classification and regression.Southampton: Department of Electronics and Computer Science of University of Southampton,1998. 1 ~ 28. 被引量:1
  • 8HU ChangHua,ZHANG JunBo,XIA Jun,et al. System analysis and design based on Matlab-Wavelet analysis. Xi' an: Xidian University Press,2000.1-25,264-271(h Chinese)(胡昌华,张军波,夏军,等.基于MATLAB的系统分析与设计--小波分析.西安:西安电子科技大学出版社,2000.1-25,264-271). 被引量:1
  • 9. 被引量:1
  • 10. 被引量:1

共引文献118

同被引文献53

引证文献2

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部