期刊文献+

Cauchy-Born Rule and the Stability of Crystalline Solids:Dynamic Problems

Cauchy-Born Rule and the Stability of Crystalline Solids:Dynamic Problems
原文传递
导出
摘要 We study continuum and atomistic models for the elastodynamics of crystalline solids at zero temperature. We establish sharp criterion for the regime of validity of the nonlinear elastic wave equations derived from the well-known Cauchy-Born rule. We study continuum and atomistic models for the elastodynamics of crystalline solids at zero temperature. We establish sharp criterion for the regime of validity of the nonlinear elastic wave equations derived from the well-known Cauchy-Born rule.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2007年第4期529-550,共22页 应用数学学报(英文版)
基金 an NSFgrant DMS 04-07866 theproject"Research Team on Complex Systems"of the Chinese Academy of Sciences the National Basic Research Program(No.2005CB321704) the National Natural Science Foundation of China(No.10571172)
关键词 Crystal elasticity Cauchy-Born rule stability of crystals Crystal elasticity, Cauchy-Born rule, stability of crystals
  • 相关文献

参考文献35

  • 1Adams,R.A.Fournier,J.J.F.Sobolev spaces.2nd ed. Academic Press,2003. 被引量:1
  • 2Ashcroft.N.W.Mermin,N.D.Solid state physics.Saunders College Publishing,1976. 被引量:1
  • 3Blanc,X.Le Bris,C.Lions,P.L.From molecular models to continuum mechanics. Arch.Ration.Mech.Anal.164(4):341-381(2002). 被引量:1
  • 4Born,M.Dynamik der krystallgitter.B.G.Teubner,Leipzig-Berlin,1915. 被引量:1
  • 5Born,M.Huang,K.Dynamical theory of crystal lattices. Oxford University Press, 1954. 被引量:1
  • 6Braides,A.Dal Maso,G.Garroni,A.Variational formulation of softening phenomena in fracture mechanics:the one-dimensional case. Arch. Ration. Mech. Anal,146(1):23-58(1999). 被引量:1
  • 7Cauchy,A.L.Sur l'equilibre et le mouvement d'un systeme de points materiels sollicites par forces d'attraction ou de repulsion mutuelle.Ex.de Math.3:187-213(1828). 被引量:1
  • 8Conti,S.Dolzmann,G.Kirchheim,B.Miiller,S.Sufficient conditions for the validity of the cauchy-born rule close to SO(n).J.Eur.Math.Soc.8(3):515-530 (2006). 被引量:1
  • 9Dafermos,C.M.Hrusa,W.J.Energy methods for quasilinear hyperbolic initial-boundary value problems.applications to elastodynamics. Arch.Ration.Mech. Anal,87(3):267-292(1985). 被引量:1
  • 10E.W,Liu,J.G.Projection method.I.Convergence and numerical boundary layers. SIAM J.Numer.Anal,32(4):1017-1057(1995). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部