摘要
In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usage of linear interpolation principle.The original problem is projected onto the reduced basis space by linear interpolation projection,and subsequently an associated interpolation matrix is generated.To ensure the largest nonsingularity,the interpolation matrix needs to go through a timenode choosing process,which is developed by applying the angle of vector spaces.As a part of this technique,error estimation is recommended for achieving the computational error bound.To ensure the successful performance of this technique,the offline-online computational procedures are conducted in practical engineering.Two numerical examples demonstrate the accuracy and efficiency of the presented method.
In this article,an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems.This technique is based on the conception of reduced basis method and the usage of linear interpolation principle.The original problem is projected onto the reduced basis space by linear interpolation projection,and subsequently an associated interpolation matrix is generated.To ensure the largest nonsingularity,the interpolation matrix needs to go through a timenode choosing process,which is developed by applying the angle of vector spaces.As a part of this technique,error estimation is recommended for achieving the computational error bound.To ensure the successful performance of this technique,the offline-online computational procedures are conducted in practical engineering.Two numerical examples demonstrate the accuracy and efficiency of the presented method.
基金
supported by the National Natural Science Foundation of China (10802028)
the Major State Basic Research Development Program of China (2010CB832705)
the National Science Fund for Distinguished Young Scholars (10725208)