期刊文献+

结合数学形态学和Level Set超声图像的分割方法

Ultrasound image segmentation method based on mathematical morphology and Level Set
下载PDF
导出
摘要 针对噪声严重的超声图像,提出了一种结合数学形态学和Level Set的分割方法。首先采用全变差模型进行图像滤波,再通过交互式区域选择和数学形态学方法获得感兴趣目标的二值化图像,并把该二值化图像轮廓作为水平集方法的初始曲线。改进隐式测地活动轮廓模型(GAC)中的边缘检测函数,增强了处理弱边缘的能力。分割结果表明,该方法能够准确地提取出目标轮廓,同时减少了迭代次数和运算时间。 A segmentation method based on mathematical morphology and level set was proposed for ultrasound images. First, the total variation model was utilized to filter the noisy ultrasound image, then the alternate region choosing and mathematical morphology method were used to obtain the binary image of the interesting object. The binary image was used as the initial curve of the level set method. The edge detection function of the implicit geodesic active contour model (GAC) was improved, and the weak edge detection was enhanced. The results show that the target contour can be accurately extracted. While the iterative and computation time is reduced.
作者 曹彪 刘奇
出处 《中国测试技术》 CAS 2007年第5期114-117,共4页 CHINA MEASUREMENT & TESTING TECHNOLOGY
关键词 分割 全变差 数学形态学 水平集 Segmentation Total variation Mathematical morphology Level set
  • 相关文献

参考文献10

  • 1Kass M, Witkin A, and Terzopoulos D. Snakes:active contour models [J].Intemational Journal of Computer Vision, 1987,1(4):321-331. 被引量:1
  • 2V Caslles, F Catte, B. Coil, et al. A geometric model for active contours in image processing [J].Numeric Mathematic, 1993,66( 1 ) : 1-31. 被引量:1
  • 3V Caselles, R Kimmel, and G Sapiro. Geodesic active contours [J].Computer visifion, 1997,22( 1 ) : 61-79. 被引量:1
  • 4Ravikanth MaUadi, J A Sethian, Baba C Vemuri. Shape modeling with front propagation: a level set approach [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17 (2) : 158-175. 被引量:1
  • 5Li Chun-ming, Xu Cheng-yang Gui Chanfeng, et al. Level set evolution without Re-initialization: a new variation formulation [J].Computer Vision and Patten Recognition, 2005,1 : 430-436. 被引量:1
  • 6Rudin L, Osher S, Fatemi E. Nonlinear total variation bassed noise removel algorithms [J].Physisea.D, 1992,60: 259-268. 被引量:1
  • 7Tony F. Chan. The digital TV filter and nonlinear denoising [J].IEEE Transaction on Image Processing, 2001, 10(2):231-241. 被引量:1
  • 8陈胜,杨新,姚丽萍,孙锟.多网格法解总变分问题及在医学图像增强中的应用[J].中国图象图形学报(A辑),2004,9(7):787-792. 被引量:3
  • 9Osher S, J A Sethian. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobin for mutations [J].Journal of Computational Physics, 1988,79:12-49. 被引量:1
  • 10Tony F. Chart, Laminate A., Vese. Active contours without edges [J]. IEEE Transaction on Image Processing, 2001,10(2):266-277. 被引量:1

二级参考文献11

  • 1Groetsch C W. Inwerse problems in the mathematical science[M]. Wieshaden, Germany: Vieweg, 1993. 被引量:1
  • 2Tikonov A N. Regularization of incorrectly posed problems[J].Soviet Mathematics Dokl,1963.4:1624-1627. 被引量:1
  • 3Acar R, Vogel C R. Analysis of total variation penalty methods[J].Inverse Problems, 1994,10:1217-1229. 被引量:1
  • 4Dobson D, Santosa F. Recovery of blocky images from noisy and blurred data[J]. Society for Industrial and Applied Mathematics Journal Application Mathematics, 1996,(56):1181-1198. 被引量:1
  • 5Rudin L I. Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physical D:nontinear Phenomena.1992,60(1-4):259-268. 被引量:1
  • 6Dennis J, Schnabel R B. Numerical methods for unconstrained optimization and nonlinear equations[M]. Englewood Cliffs NJ,USA: Prentce-Hall,1993. 被引量:1
  • 7Vogel C R, Oman M E. Iterative methods for total variation denoising[J]. Society for Industrial and Applied Mathematics Journal Seiety Computer, 1996,7(1) :27-238. 被引量:1
  • 8German D, Reynolds G. Constrained image restoration and the recovery of discontinuities [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(3): 367-383. 被引量:1
  • 9German D, Yang C. Nonlinear image recovery with half-quadratic regularization [J]. IEEE Transactions on Image Processing, 1995,4(7) : 932-945. 被引量:1
  • 10Charbonnier P, Feraud L B, Aubert G. Deterministic edgepreserving regularization in computed imaging[J]. IEEE Transactions on Image Processing,1997,6(2):298-311. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部