期刊文献+

一类二阶奇异边值问题的正解 被引量:9

Positive Solutions for a Class of Singular Boundary Problems of Second Order
下载PDF
导出
摘要 讨论了如下二阶奇异边值问题正解的存在性其中f可能在t=0,1都有奇性. Some results of the existence of positive solutions for singular boundary value problems have been given as {-(p(t)u′(t))′+q(t)u(t)=f(t,u(t)) t∈(0,1) u(0)=u(1)=0 where the function f(t, x) may be singular at t = 0,1.
作者 熊明
机构地区 大理学院数学系
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第8期43-48,共6页 Journal of Southwest University(Natural Science Edition)
基金 云南省教育厅资助项目(Ky416140)
关键词 奇异边值问题 正解 变分法 Singular boundary value problem Positive solution Variational method
  • 相关文献

参考文献6

  • 1LIUJIAQUAN,ZENGPING'AN,XIONGMING.POSITIVE SOLUTIONS FOR SINGULAR BOUNDARY VALUE PROBLEM OF SECOND ORDER[J].Chinese Annals of Mathematics,Series B,2004,25(3):383-392. 被引量:2
  • 2[2]Donal O'Regan.Solvability of Some forth (and Higher) Order Singular Boundary Value Problems[J].J Math Anal Appl,1991,161(1):78-116. 被引量:1
  • 3[3]Donal O'Regan.Theorey of Singular Boundary Value Problems[M].Singapore:World Scientific,1994. 被引量:1
  • 4[4]Ravi P Agazwal,Donal O'Regan.Nonlinear Superlinear Singular and Nonsingular Second Order Boundary Value Problems[J].J Differential Eq.,1998,143:60-95. 被引量:1
  • 5张恭庆著..临界点理论及其应用[M].上海:上海科学技术出版社,1986:316.
  • 6[6]Hardy G H,Littlewood J E,Pòlya G G.H.Inequalities[M].2nd Edition.Cambridge:Cambridge University Press,1952. 被引量:1

二级参考文献5

  • 1[1]Donal O'Regan, Theorey of Singular Boundary Value Problems, World Scientific, Singapore, 1994. 被引量:1
  • 2[2]Ravi P. Agazwal & Donal O'Regan, Nonlinear superlinear singular and nonsingular second order boundary value problems, J. Differential Eq., 143(1998), 60-95. 被引量:1
  • 3[3]Zhao, Z. Q., Positive solution of boundary value problem of nonlinear singular differential equation (in Chinese), Acta Math., 43(2000), 179-188. 被引量:1
  • 4[4]Chang, K. C., Critical Point Theory and Its Applications (in Chinese), Shanghai Scientific and Technological Literature Publishing, 1986. 被引量:1
  • 5[5]Liu, J. Q., Positive solutions for singular boundary problem of second order (in Chinese), Journal of Qu Fu Normal University, 28:4(2002), 1-10. 被引量:1

共引文献1

同被引文献61

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部