摘要
引入二元非乘积型Jacobi权,利用分解技巧及一元的结论,讨论单纯形上Meyer-Knig-Zeller算子加权逼近的收敛阶,得到逼近的正定理。
In this paper, we first construct Jacobi-weights of non-product form, then study the convergence rate of Meyer-Koenig-Zeller operators with Jacobi-weights on a simplex by making use of multivariate decompose skills and results of Meyer-Koenig-Zeller operators and finally, obtain the approximation direct theorem.
出处
《浙江海洋学院学报(自然科学版)》
CAS
2007年第2期187-191,209,共6页
Journal of Zhejiang Ocean University(Natural Science Edition)
基金
浙江省教育厅基金资助项目(20040292)