期刊文献+

Meyer-Konig-Zeller算子对一类绝对连续函数的逼近 被引量:1

Rate of Convergence of the Meyer-Konig-Zeller Operators for Some Absolutely Continuous Functions
下载PDF
导出
摘要 主要利用Bojanic-Cheng方法,结合分析技术,研究了Meyer-Knig-Zeller算子对一类绝对连续函数的逼近,得到了比较精确的收敛阶估计。 By Bojanic-Cheng’s method and analysis techniques,the approximation properties of the Meyer-Knig-Zeller operators for some absolutely continuous functions are studied,and a relatively accurate approximation rate is obtained.
出处 《莆田学院学报》 2013年第2期19-21,共3页 Journal of putian University
基金 福建省教育厅A类科技项目(JA12360)
关键词 MEYER-KONIG-ZELLER算子 收敛阶 绝对连续函数 Meyer-Konig-Zeller operators approximation rate absolutely continuous functions
  • 相关文献

参考文献7

二级参考文献9

  • 1连博勇,陈旭,曾晓明.关于Bernstein-Bézier算子对一类绝对连续函数的逼近[J].厦门大学学报(自然科学版),2006,45(6):749-751. 被引量:5
  • 2ZENG Xiao Ming.Approximation properties of Gamma operators[J].J Math Anal Appl,2005(311):389-401. 被引量:1
  • 3BOJANIC R,CHENG F.Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation[J].J Math Anal Appl,1989(141):136-151. 被引量:1
  • 4Chang G.Generalized Bernstein-Bézier polynomials[J].J.Comput.Math.,1983,1(4):322-327. 被引量:1
  • 5Li P,Gong Y H.The order of approximation by the generalized Bernstein-Bézier polynomials[J].J.of China Univ.of Science and Technology,1985,15(1):15-18. 被引量:1
  • 6Liu Z X.Approximation of continuous functions by the generalized Bernstein-Bézier polynomials[J].Approx.Theory.Appl.,1986,2(4):105-130. 被引量:1
  • 7Zeng X M,Piriou A.On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions[J].J.Approx.Theory,1998,95:369-387. 被引量:1
  • 8Zeng X M.On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions II[J].J.Approx.Theory,2000,104:330-344. 被引量:1
  • 9Bojanic R,Cheng F.Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation[J].J.Math.Anal.Appl.,1989,141:136-151. 被引量:1

共引文献6

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部