期刊文献+

船队规划数学模型及一种新的规划方法的研究 被引量:5

A Discrete Particle Swarm Optimization Algorithm with Dimension Mutation Operator for Multi-stage Fleet Planning
下载PDF
导出
摘要 从船运公司船队规划的概念及意义入手,建立了船队规划的数学模型。并分析了传统船队规划方法的优缺点,采用改进的离散粒子群算法进行大规模的船队规划计算研究。该方法既避免了线性规划算法出现的购买船艘数不为整数的问题,又避免了动态规划方法在进行大规模船队规划时出现的"维数灾"问题。通过实例表明提出的算法适用于多阶段船队规划数学模型。 This article started with the concept and significance of fleet plan and established mathematical model, analyzed the merits and shortcoming of traditional methods, used improvement discrete particle swarm Optimization (IDPSO) in large-scale fleet plan computation research. This method has avoided non-integer ships number that linear programming algorithm appears and also avoided “the curse of dimensionality” in the dynamic programming method when planning the large-scale fleet. The example shows that the IDPSO is feasible to be applied to multi-stage fleet planning and other mathematic models.
出处 《交通科技》 2007年第4期128-130,共3页 Transportation Science & Technology
关键词 船队规划 数学模型 离散粒子群 变异 fleet planning mathematic model discrete particle swarm optimizatlon mutation
  • 相关文献

参考文献4

二级参考文献23

  • 1侯云鹤,鲁丽娟,熊信艮,程时杰,吴耀武.改进粒子群算法及其在电力系统经济负荷分配中的应用[J].中国电机工程学报,2004,24(7):95-100. 被引量:157
  • 2周晖,周任军,谈顺涛,周皓.用于无功电压综合控制的改进粒子群优化算法[J].电网技术,2004,28(13):45-49. 被引量:33
  • 3Kennedy J, Eberhart R. Particle swarm optimization [C].Proceedings of IEEE International Conference on Neural Networks,1995(4): 1942-1948. 被引量:1
  • 4Fogel LJ, Owens A J, Walsh M J, Artificial Intelligence through Simulation Evolution [M]. John Wiley & Sons, New York, 1966. 被引量:1
  • 5D.E.Goldberg. Genetic Algorithm in Search, Optimization, and Machine Learning [M]. Addison-Wesley Publishing Company Inc. 1985. 被引量:1
  • 6Boeringer D W, Werner D H. A comparison of particle swarm optimization and genetic algorithms for a phased array synthesis problem [C]. Antennas and Propagation Society International Symposium, 2003. IEEE, 2003(1): 181-184. 被引量:1
  • 7Kumar A I S, Dhanushkodi K, Kumar J J et al. Particle swarm optimization solution to emission and economic dispatch problem [C].TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, 2003, 1: 435-439. 被引量:1
  • 8Zheng Y L, Ma L H, Zhang L Y et al. On the convergence analysis and parameter selection in particle swarm optimization[C].Proceedings of Internafonal Conference on Machine Learning and Cybernetics 2003:1802-1807. 被引量:1
  • 9Zheng Yongling, Ma Longhua, Zhang Liyan et al. On the convergence analysis and parameter selection in particle swarm optimization[C]. IEEE International Conference on Machine Learning and Cybernetics, 2003, 3: 1802-1807. 被引量:1
  • 10Shi Yuhui. Particle swarm optimization: developments, applications and resources[C]. Proceedings of the 2001 Congress on Evolutionary Computation, 2001: 81-86. 被引量:1

共引文献111

同被引文献44

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部