期刊文献+

利用粒子群优化算法进行桥梁维修管理计划的优化 被引量:6

Optimization of Maintenance Planning for Existing Bridge Using PSO
下载PDF
导出
摘要 制定桥梁维修管理计划是一项非常繁杂的工程优化难题,使用常用的优化算法很难取得满意的结果。利用耐荷性和耐久性作为桥梁的健康指数,考虑维修方案和维修费用的问题,用费用最小化和品质最大化2种方案建立了桥梁维修管理的优化模型。探讨利用粒子群优化算法(PSO)求最优桥梁维修管理计划的解的可能性,并与作者开发系统中的遗传算法(SGA)和免疫遗传算法(IA)进行了比较,运用多样度的概念说明了粒子群优化算法(PSO)在解决这类问题的先进性。结果表明,粒子群优化算法(PSO)对于桥梁维修管理计划的优化是一种普适高效的算法;而且,考虑维修的管理期间越长,应用粒子群优化算法求解问题收敛性与其他2种方法相比显得更好,得到准最优解的频率也更高。 How to draw up a plan of bridge maintenance management is a very complicated optimization problem. It is very difficult to achieve satisfactory results using usual optimization algorithm. An optimum model for bridge maintenance planning considering both maintenance cost minimization and quality maximization is established by adopting load-carrying capability and durability as the bridge rating indices.The optimum possibility by using Particle Swarm Optimization (PSO) is discussed and compared with Simple Genetic Algorithms (SGA) and Immune Algorithms (IA).It is illuminated that PSO is an advanced method in solving this problem by using concept of diversity. It is found that PSO is a widely applicable and effective method for bridge maintenance planning.At the same time, relative to the other methods, the longer the maintenance period become, the better the reliability of the solution using PSO is and more easily the optimum solution can be found.
出处 《公路交通科技》 CAS CSCD 北大核心 2007年第7期64-69,共6页 Journal of Highway and Transportation Research and Development
基金 日本文部科学省科学研究费资助项目(10450169)
关键词 桥梁工程 离子群优化算法 维修管理计划 多样度 bridge engineering particle swarm optimization (PSO) maintenance planning diversity
  • 相关文献

参考文献10

二级参考文献68

  • 1陆亚兴 殷建军 等.桥梁缺损状况评价方法[J].中国公路学报,1996,3. 被引量:22
  • 2.土木研究所资料桥梁点检要领(案)土木研究所资料2[R].建设省土木研究所,.. 被引量:1
  • 3[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930. 被引量:1
  • 4[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469. 被引量:1
  • 5[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100. 被引量:1
  • 6[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976. 被引量:1
  • 7[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948. 被引量:1
  • 8[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43. 被引量:1
  • 9[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994. 被引量:1
  • 10[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975. 被引量:1

共引文献826

同被引文献51

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部