期刊文献+

混合区间粒子群算法

Hybrid Interval Partical Swarm Optimization
下载PDF
导出
摘要 提出了一种新的混合区间粒子群算法,该算法包含两部分,首先应用区间优化算法删除大部分不含有全局最小点的搜索区间,其次在剩余的搜索空间产生粒子群算法的初始种群,应用粒子群算法和区间算法共同解得全局最小值。数值实验表明,该方法快速、有效。 A new hybrid interval partical swarm optimization is presented in this parper.The arithmetic includes two parts.Firstly,we apply interval arithmetic to delete a majority of search space which don't include global minimum.Secondly,initial swarm is produced in spare search space.Then,we use partical swarm optimization and interval arithmetic to find the global minimum.At last,we verify the effective and efficient performance of the algorithms through the simulation.
作者 陈健 刘同玉
出处 《系统管理学报》 北大核心 2006年第6期552-555,560,共5页 Journal of Systems & Management
基金 山东省自然科学基金资助项目(Y2003G01)
关键词 区间 粒子群 优化算法 interval partical wwarm optimization algorithm
  • 相关文献

参考文献8

  • 1邢文训,谢金星编著..现代优化计算方法[M].北京:清华大学出版社,1999:298.
  • 2[2]Shen Peiping,Zhang Kecun,Wang Yanjun.Application of interval arithmetic in non-smooth global optimization[J].Applied Mathematic and Computation,2003,144:413-431. 被引量:1
  • 3申培萍,张可村.求一类多元多峰函数全局极小的区间斜率方法[J].计算数学,2003,25(3):333-346. 被引量:7
  • 4[4]Eberhart R C,Shi Y.Particle swarm optimization:Developments,applications and resources[C]//Proceedings of the IEEE Congress on Evolutionary Computation(CEC 2001).Seoul,Korea,Piscataway,NJ:IEEE Service Center,2001:81-86. 被引量:1
  • 5[5]Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm[C]//Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics,Piscataway,NJ.,1997:4104-4109. 被引量:1
  • 6李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 7[7]van den Bergh F,Engelbrecht A P.A new locally convergent particle swarm optimizer[C]//Proceedings of IEEE Conference on Systems,Man,and Cybernetics (SMC 2002),2002. 被引量:1
  • 8[8]Xu Peiliang.A hybrid global optimization method:the multi-dimensional case[J].Journal of Computational and Applied Mathematics,2003,155:423-446. 被引量:1

二级参考文献25

  • 1V. P. Gergel, Ya. D. Sergeyev, Sequential and parallel algorithms for global minimizing functions with Lipschitzian derivatives, Computer and Mathematics with Applications, 37(1999), 163-179. 被引量:1
  • 2Ge R., A filled function method for finding a global minimizer of a function of several variables, Mathematical Programming, 46 (1990), 191-204. 被引量:1
  • 3D. B. Fogel, An introduction to simulated evolutionary optimization, IEEE Transactions on Neural Networks, 5:1 (1994), 3-14. 被引量:1
  • 4Andras Erik Csallner, Tibor Csendes, Mihaly Csaba Markot, Multisection in interval branch-and-bound methods for global optimization I. Theoretical Results, Journal of Global Optimization, 16 (2000), 371-392. 被引量:1
  • 5Tibor Csendes, New subinterval selection criteria for interval global optimization, Journal of Global Optimization, 19 (2001), 307-327. 被引量:1
  • 6R. Krawczy, A. Neumaier, Interval slopes for rational functions and associated centered forms, SIAM J. Numer. Anal., 22 (1985), 604-616. 被引量:1
  • 7Lubomir V. Kolev, Use of interval slopes for the irrational part of factorable functions,Reliable Computing, 3 (1997), 83-93. 被引量:1
  • 8Shen Zuhe, M. A. Wolfe, On interval enclosures using slope arithmetic, Applied Mathematics and Computation, 39 (1990), 89-105. 被引量:1
  • 9L.G.Casado, J.A.Martinez, I.Garcia, Experiments with a new selection criterion in a fast interval optimization algorithm, Journal of Global Optimization, 19 (2001), 247-264. 被引量:1
  • 10E. Hansen, Global optimization using interval analysis, Marcel Dekker Inc., New York,1993. 被引量:1

共引文献403

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部