期刊文献+

Heteroepitaxial growth of InP/GaAs(100) by metalorganic chemical vapor deposition

Heteroepitaxial growth of InP/GaAs(100) by metalorganic chemical vapor deposition
原文传递
导出
摘要 Using two-step method InP epilayers were grown on GaAs(100) substrates by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). X-ray diffraction (XRD) and room-temperature (RT) photolu- minescence (PL) were employed to characterize the quality of InP epilayer. The best scheme of growing InP/GaAs(100) heterostructures was obtained by optimizing the initial low-temperature (LT) InP growth conditions, investigating the effects of thermal cycle annealing (TCA) and strained layer superlattice (SLS) on InP epilayers. Compared with annealing, 10-periods Ga0.1In0.9P/InP SLS inserted into InP epilayers can improve the quality of epilayers dramatically, by this means, for 2.6-#m-thick heteroepitaxial InP, the full-widths at half-maximum (FWHMs) of XRD ω and ω-28 scans are 219 and 203 arcsec, respectively, the RT PL spectrum shows the band edge transition of InP, the FWHM is 42 meV. In addition, the successful growth of InP/In0.53Ga0.47As MQWs on GaAs(100) substrates indicates the quality of device demand of InP/GaAs heterostructures. Using two-step method InP epilayers were grown on GaAs(100) substrates by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). X-ray diffraction (XRD) and room-temperature (RT) photolu- minescence (PL) were employed to characterize the quality of InP epilayer. The best scheme of growing InP/GaAs(100) heterostructures was obtained by optimizing the initial low-temperature (LT) InP growth conditions, investigating the effects of thermal cycle annealing (TCA) and strained layer superlattice (SLS) on InP epilayers. Compared with annealing, 10-periods Ga0.1In0.9P/InP SLS inserted into InP epilayers can improve the quality of epilayers dramatically, by this means, for 2.6-#m-thick heteroepitaxial InP, the full-widths at half-maximum (FWHMs) of XRD ω and ω-28 scans are 219 and 203 arcsec, respectively, the RT PL spectrum shows the band edge transition of InP, the FWHM is 42 meV. In addition, the successful growth of InP/In0.53Ga0.47As MQWs on GaAs(100) substrates indicates the quality of device demand of InP/GaAs heterostructures.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2007年第7期422-425,共4页 中国光学快报(英文版)
基金 This work was supported by the National Basic Research Program of China(No.2003CB314901) the Program for New Century Excellent Talents in University(No.NCET-05-0111) the National Natural Science Foundation of China(No.60576018).
关键词 ANNEALING Epitaxial growth Full width at half maximum HETEROJUNCTIONS Metallorganic chemical vapor deposition PHOTOLUMINESCENCE Semiconducting gallium arsenide SUPERLATTICES X ray diffraction analysis Annealing Epitaxial growth Full width at half maximum Heterojunctions Metallorganic chemical vapor deposition Photoluminescence Semiconducting gallium arsenide Superlattices X ray diffraction analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部