期刊文献+

基于最小二乘支持向量机的汽轮机故障诊断 被引量:25

Steam turbine fault diagnosis based on least squares support vector machine
下载PDF
导出
摘要 提出一种小波包分析与最小二乘支持向量机相结合的汽轮机故障诊断模型.对故障信号功率谱进行小波分解,简化了故障特征向量的提取.用二次损失函数取代支持向量机中的不敏感损失函数,将不等式约束条件变为等式约束,从而将二次规划问题转变为线性方程组的求解.选用RBF函数作为核函数,并提出对核函数的参数进行动态选取,提高了诊断的准确率.仿真结果表明该模型具有较强的非线性处理和抗干扰能力. A steam turbine fault diagnosis model, in which machine (LSSVM) are combined effectively, is proposed wavelet packet analysis and least squares support vector The power spectrums of fault signals are decomposed by using wavelet analysis, which simplifies choosing method of fault eigenvectors. The non-sensitive loss function is replaced by quadratic loss function and the inequality constraints are replaced by equality constraints. Consequently, quadratic programming problem is simplified as the problem of solving linear equation groups. RBF function is used as kernel function, and it is proposed to choose the parameter of kernel function dynamicly, which enhances the preciseness rate of diagnosis. The simulation results show that the model has strong non-linear solution and antijamming ability.
出处 《控制与决策》 EI CSCD 北大核心 2007年第7期778-782,共5页 Control and Decision
基金 国家自然科学基金项目(60572062) 中国博士后科学基金项目(2005038515).
关键词 小波包分析 故障诊断 最小二乘支持向量机 概率神经网络 汽轮机 Wavelet packet analysis Fault diagnosis Least squares support vector machine Probabilistie neural networks Steam turbine
  • 相关文献

参考文献11

  • 1Vapnik V,Golowich S,Smola A.Support vector method for function approximation,regression estimation and signal processing[J].Advances in Neural Information Processing Systems,1996,9(2):281-287. 被引量:1
  • 2Chen S,Samingan A K,Hanzo L.Support vector machine multiuser receiver for DS-CDMA signals in multipath channels[J].IEEE Trans on Neural Networks,2001,12(3):604-611. 被引量:1
  • 3Sebald D J,Bucklew J A.Support vector machine techniques for nonlinear equalization[J].IEEE Trans on Signal Processing,2000.48(11):3217-3226. 被引量:1
  • 4Melgani F,Bruzzone L.Classification of hyperspectral remote sensing images with support vector machines[J].IEEE Trana on Geoscience Remote Sensing.2004,42(8):1778-1790. 被引量:1
  • 5Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300. 被引量:1
  • 6Lukas L,Suykens J A K,Vandewalle J.Least squares support vector machines classifiers:A multi two-spiral benchmark problem[C].Proc of the Indonesian Student Scientific Meeting.Manchester,2001:289-292. 被引量:1
  • 7Suykens J A K,Lukas L,Vandewalle J.Sparse least squares support vector machine classifiers[C].Proc of the European Symposium on Artificial Neural Networks.Bruges,2000:37-42. 被引量:1
  • 8虞和济.基于神经网络的智能诊断[M].北京:冶金工业出版社,2002.. 被引量:43
  • 9叶志锋,孙健国.基于概率神经网络的发动机故障诊断[J].航空学报,2002,23(2):155-157. 被引量:51
  • 10李冬辉,刘浩.基于概率神经网络的故障诊断方法及应用[J].系统工程与电子技术,2004,26(7):997-999. 被引量:38

二级参考文献10

  • 1[1]Doel D L. Temper-a gas-path analysis tool for commercial jet engines[J]. Transactions of the ASME J of Engineering for Gas Turbines and Power, 1994, 116(1):82-89. 被引量:1
  • 2[2]Barwell M J. COMPASS:ground based engine monitoring program for general application[R]. SAE Technical Paper No.871734, 1987. 被引量:1
  • 3[3]Eustace R, Merrington G. Fault diagnosis of fleet engines using neural networks[A]. ISABE 95-7085[C], 1995:926-936. 被引量:1
  • 4[4]Specht D F. Probabilistics neural networks[J]. Neural networks. 1990 (3):109-118. 被引量:1
  • 5[5]Volponi A J, Pold H D, Ganguli R, et al. The use ofKalman filter and neural networks methodologies in gas turbine performance diagnostics: a comparative study[A]. In: Proceedings of ASME TURBO EXPO 2000[C], Munich, Germany, 2000. 被引量:1
  • 6[6]LU Pong-Jeu, Zhang Ming-Chuan, Hsu Tzu-Cheng, et al,An evaluation of engine faults diagnostics using artificial neural networks[A]. In: Proceedings of ASME TURBO EXPO 2000[C], Munich, Germany, 2000. 被引量:1
  • 7章毓晋.图像分割[M].北京:科学出版社,2001.. 被引量:577
  • 8Babacan SD, Sayood K. Predictive Image Compression Using Conditional Averages[C]. IEEE Proceedings Data Compression Conference, 2004. 524-524. 被引量:1
  • 9Simard PY, Malvar HS, Rinker J, et d. A Foreground/Dackground Separation Algorithm for Image Compression[C], IEEE Proceedings of Data Compression Conference, 2004. 498-507. 被引量:1
  • 10李宏贵,李兴国.灰度图像的子块压缩方法[J].红外与激光工程,2002,31(5):390-394. 被引量:2

共引文献123

同被引文献205

引证文献25

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部