期刊文献+

基于关联规则的网络安全仿真研究 被引量:10

Application Study on Network Security Based on Association Rule
下载PDF
导出
摘要 研究保护网络安全问题,网络入侵具有多样性、不确定性和隐蔽性,由于安全检测易出现误检和漏检,对未知入侵行为无法正确检测,导致网络入侵检测困难,检测的正确率较低。为了提高网络入侵检测正确率,更好保护网络安全,提出基于关联规则的网络入侵检测方法。通过关联规则首先对网络用户正常行为进行挖掘,找出那些可信的并具有代表性的规则,然后利用关联规则对待用户行为进行检测。利用KDD CUP99数据集进行仿真,仿真结果表明,关联规则的入侵检测方法加快了检测速度,提高了网络入侵检测正确率,降低漏报率与误报率,可为网络保护设计提供参考。 Study on network security protection,network intrusion has diversity,uncertainty and concealment,because safety detection is easily mistaken and missed,unknown intrusion behavior cannot be detected correctly to detection accuracy is relatively low.In order to improve the network intrusion detection rate,protect network security better,this paper proposed a network intrusion detection method based on the association rules.Firstly,the network user normal behavior is mined by association rule to find the credible and representative rules,and then using association rules to detect user behavior.The simulation experiment is carried out on KDD CUP99 data set,the simulation results show that the proposed method can accelerate the detection speed and improve the network intrusion detection rate,reduce the false negative rate and false alarm rate,can offer the reference for the design of network protection.
机构地区 内江师范学院
出处 《计算机仿真》 CSCD 北大核心 2011年第11期130-133,共4页 Computer Simulation
基金 四川省教育厅自然科学重点科研项目(09ZA055)
关键词 数据挖掘 关联规则 入侵检测 网络入侵 Data mining Association rule Intrusion detection Network intrusion
  • 相关文献

参考文献8

二级参考文献71

  • 1王涛,宫会丽.支持向量机在入侵检测系统中的应用[J].微计算机信息,2006(12X):89-91. 被引量:5
  • 2杨奎河,单甘霖,赵玲玲.基于最小二乘支持向量机的汽轮机故障诊断[J].控制与决策,2007,22(7):778-782. 被引量:25
  • 3刘美兰 姚京松.入侵检测预警系统与其性能设计.信息和通信安全CCICS'99:第一届中国信息和通信安全学术会议论文集[M].北京:科学出版社,2000.105-111. 被引量:1
  • 4王珊.数据仓库技术与联机分析处理[M] .[M].北京:科学出版社,1999.. 被引量:1
  • 5[1]Eskin E.Anomaly detection over noisy data using learned probability distributions,In Proceedings of the International Conference on Machine Learning[C],2000. 被引量:1
  • 6[2]Luo J.Intergration fuzzy logic with date mining methods for intrusion detection[D].Mississippi State University,1999. 被引量:1
  • 7[3]The third international knowledge discovery and data mining tools competition dataset kdd99-cup[DB/OL],http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,1999. 被引量:1
  • 8Mohammad Saniee Abadeh, Jafar Habibi, Zeynab Barzegar, Muna Sergi. A parallel genetic local search algorithm for intrusion detection in computer networks[J]. Engineering Applications of Artificial Intelligence, 2007,20(8) :1058 -1069. 被引量:1
  • 9Roberto Perdisci, Giorgio Giacinto, Fabio Roli. Alarm clustering for intrusion detection systems in computer networks[J]. Engineering Applications of Artificial Intelligence, 2006, 19 (4) :429 - 438. 被引量:1
  • 10Ivan Goethals, Kristiaan Pelekmans, Johan A K Suykens, Bart De Moor. Identification of MIMO Hammerstein models using least squares support vector machines [ J ]. Automatica, 2005,41 (7) : 1263 - 1272. 被引量:1

共引文献141

同被引文献60

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部