期刊文献+

基于经验数据的T-S模糊控制器设计与优化 被引量:1

Design and optimization of T-S fuzzy logic controller based on empirical data
下载PDF
导出
摘要 提出了一种基于经验数据而非语言的T-S模糊控制器设计和优化方法.此方法分为三个阶段,第一阶段依据输入变量的范围来确定输入变量的高斯型隶属度函数;第二阶段在不改变输入变量隶属度函数的前提下,对经验数据施加递推最小二乘法以确定T-S模糊控制器的后件系数;第三阶段,使用梯度下降方法同时优化控制规则的前件参数和后件参数.倒立摆的仿真试验结果验证了该方法的有效性. An approach to design and optimize T-S fuzzy logic controller was proposed based on empirical data rather than linguistic. There were three parts in it. Firstly, the Gaussian membership function of input variable was to be determined according to the range of input variable. Then, the coefficients of consequent components in T-S fuzzy logic controller were to be determined with recursive least square algorithm for the empirical data while the membership function parameters of input variable were unaltered. Finally, all the parameters of T-S fuzzy logic controller made up of antecedent parameters and consequent parameters were to be simultaneously optimized with gradient descent algorithm. The effectiveness of this approach was verified by means of simulation of inverted pendulum.
出处 《兰州理工大学学报》 CAS 北大核心 2007年第3期75-78,共4页 Journal of Lanzhou University of Technology
基金 甘肃省科技攻关项目(RG5035-A52-007-02)
关键词 T-S模糊控制器 经验数据 递推最小二乘法 梯度下降法 倒立摆 T-S fuzzy logic controller empirical data recursive least square algorithm gradient descent algorithm inverted pendulum
  • 相关文献

参考文献11

二级参考文献32

  • 1Chen J Q,Xi Y G,Zhang Z J.A clustering algorithm for fuzzy model identification[J].Fuzzy Sets and Systems,1998,98 (3):319 ~329. 被引量:1
  • 2ChuangC C,Hsiao C C,Jeng J T.A novel approach for TSK fuzzy modeling with outliers[A].2003 International Conference on Machine Learning and Cybernetics[C].Piscataway,NJ,USA:IEEE,2003.2158 ~2163. 被引量:1
  • 3Leng G,Prasad G,McGinnity T M.An on-line algorithm for creating self-organizing fuzzy neural networks[J].Neural Networks,2004,17(10):1477~1493. 被引量:1
  • 4Tsekouras G,Sarimveis H,Kavakli E,et al.A hierarchical fuzzyclustering approach to fuzzy modeling[J].Fuzzy Sets and Systems,2005,150(2):245 ~266. 被引量:1
  • 5Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Transactions on Systems,Man and Cybernetics,1985,SMC-15 (1):116~132. 被引量:1
  • 6Wang L W,Mendel Z Y.Fuzzy basis functions,universal approximation and orthogonal least-squares learning[J].IEEE Transactions on Neural Networks,1992,3(5):807 ~814. 被引量:1
  • 7Chen J Q,Chen L J.An on-line identification algorithm for fuzzy systems[J].Fuzzy Sets and Systems,1994,64(1):63 ~72. 被引量:1
  • 8Yan Shi, Masaharu Miaumoto. A new approach of neuro-fuzzy learning algorithm for tuning fuzzy rules[J]. Fuzzy Sets and Systems,2000,112:99-116. 被引量:1
  • 9Mauricio Figueiredo, Fernando Gomide. Design of fuzzy systems using neurofuzzy networks[J]. IEEE Trans on Neural Networks,1999,10(4):815-827. 被引量:1
  • 10Wang L X, Mendel J M. Generating fuzzy rules by learning from examples[J]. IEEE Trans on Systems, Man and Cybernet,1992,22(6):1414-1422. 被引量:1

共引文献43

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部