期刊文献+

一种基于进化聚类的动态TSK模型建模方法 被引量:2

Modeling Approach of Dynamic TSK Model Based on Evolving Clustering Method
下载PDF
导出
摘要 在一种进化聚类算法(ECM)的基础上提出了一种新的动态TSK模糊模型的建模算法,以往许多神经模糊模型都不适用于自适应在线学习,而文章模型能实时地调整模糊规则库及规则参数,具有较强的在线学习能力;仿真结果表明,该方法是有效的。 On the basis of a evolving clustering method (ECM), a new modeling approach of dynamic TSK fuzzy model was proposed. In the past, several neuro-fuzzy models were not suitable for adaptive on--line learning, but the model proposed here can real--time adjust the fuzzy rule base and rule parameters, so it has powerful ability of on-line learning. The results of simulation demonstrate the effectiveness of the proposed modeling approaeh.
出处 《计算机测量与控制》 CSCD 2006年第4期528-529,共2页 Computer Measurement &Control
基金 湖南省自然科学基金(04JJY6036)。
关键词 进化聚类算法 TSK模糊模型 模糊规则 在线学习 evolving clustering method TSK3 fuzzy model fuzzy rule on--line learning
  • 相关文献

参考文献6

  • 1Saad D. On-line learning in neural networks [M]. Cambidge University Press, 1999. 被引量:1
  • 2王守唐,高东杰.基于T-S模糊模型的辨识算法[J].控制与决策,2001,16(5):630-632. 被引量:18
  • 3Fritzke B. A growing neural gas network learns topologies [J]. Advances in Neural Information Processing Systems, 1995, 7:625-632. 被引量:1
  • 4Deng D, Kasabov N. Evolving self-organizing maps for on-line learning, data analysis and modeling [J]. Neural Networks Neural Computing, 2000,6:3-8. 被引量:1
  • 5Kasabov N. Evolving fuzzy neural networks-algorithms, applications and biological motivation [A]. Yamakawa, T. and G. Matsumoto (eds) Methodologies for the conception, design and application of soft computing [C]. World Scientific, 1998:271-274. 被引量:1
  • 6吴晓莉,林哲辉等编著..MATLAB辅助模糊系统设计[M].西安:西安电子科技大学出版社,2002:272.

二级参考文献3

  • 1Park M,Fuzzy Sets and Systems,1999年,104卷,2期,169页 被引量:1
  • 2Cao S G,Automatic,1997年,33卷,6期,1017页 被引量:1
  • 3Cao S G,Int J Syst Sci,1996年,7卷,2期,193页 被引量:1

共引文献17

同被引文献20

  • 1金阳,左万利.一种基于动态近邻选择模型的聚类算法[J].计算机学报,2007,30(5):756-762. 被引量:18
  • 2章毓晋.图像分析[M].2版.北京:清华大学出版社,2005.129,132. 被引量:3
  • 3BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy C-means clustering algorithm[ J]. Computers and Geosciences, 1984, 10 (2-3) :191-203. 被引量:1
  • 4MA Li, STAUNTON R C. A modified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns[ J]. Pattern Recognition, 2007, 40( 11 ) :3005-3011. 被引量:1
  • 5ADEL H, BERTRAND Z. FCM with spatial and multi-resolution constraints for image segmentation[ J ]. Lecture Notes Computer Science, 2005, 3656(10) :17-23. 被引量:1
  • 6KASABOV, N K, SONG Qun. DENFIS: dynamic evolving neural- fuzzy inference system and its application for time-series prediction [J]. IEEE Trans on Fuzzy System, 2002, 10(2) :144-154. 被引量:1
  • 7Ravi V, Srinivas E R, Kasabov N K. On-line evolving fuzzy clustering[C]. Int Conf on Computational Intelligence and Multimedia Applications. Sivakasi: IEEE, 2007, 1: 347-351. 被引量:1
  • 8Song Q, Kasabov N. Dynamic evolving neuro-fuzzy inference system: On-line learning and application for time-series prediction[C]. Proc of 6th Int Conf on Soft Computing. Kobe, 2000: 696-701. 被引量:1
  • 9Kasabov N K. Evolving connectionist systems: Methods and applications in bioinformatics, brain study and intelligent machines[M]. Berlin Heidelberg: Springer, 2003: 39-49. 被引量:1
  • 10Kasabov N K, Song Q. Dynamic evolving neural-fuzzy inference system and its application for time-series prediction[J]. IEEE Trans on Fuzzy Systems, 2002, 10(2): 144-154. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部