期刊文献+

Web访问挖掘中数据预处理的改进 被引量:3

Improving Data Preparation Model in Web Usage Mining
下载PDF
导出
摘要 在分析现有的Web访问挖掘数据预处理模型和会话识别算法的基础上,提出了一种改进的Web访问挖掘数据预处理模型并对基于时间和引用的启发式会话识别算法进行了改进。实验证明,改进的Web访问挖掘数据预处理模型和会话识别算法非常适合于当前搜索引擎广泛使用下的Web访问挖掘数据预处理。 An improved model of data preparation in WUM and an advanced time-referer-based heuristic algorithm in session distinguishing are proposed. Existing model of data preparation in WUM and methods in session distinguishing are analyzed and their disadvantages are pointed out. Experiments show that the proposed model and algorithm are adaptable to data preparation in WUM with agent.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2007年第2期69-73,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 浙江省教育厅基金资助项目(0404121-F) 浙江理工大学科学基金资助项目(111251A4Y04002)
关键词 数据挖掘 Web访问挖掘 数据预处理 data mining Web usage mining data preparation
  • 相关文献

参考文献7

二级参考文献17

  • 1[1]R Agrwal,R Srikant. Fast algorithms for mining association rules[C].In:Proc of the 20th VLDB conference,1994 被引量:1
  • 2[2]R Cooley,B Mobasher,J Srivastava. Web mining:Inoformation and pattern disvovery on the World Wide Web[C].In:International Conference on Tools with Artificial Intelligence,Newport Beach,CA, 1997:558~567 被引量:1
  • 3[3]Open Market Inc. Open Market Web reporter. http://www. openmarket.com, 1996 被引量:1
  • 4[4]T Bray,J Paoli,C M Sperberg-McQueen. Extensible markup Language (XML)1.0 W3c recommendation[R].Technical report,W3c,1998 被引量:1
  • 5[5]T Joachims,d Freitag,T Mitchell.Webwatcher:A tour guide for the World Wide Web[C].In:Proc of the 15 th Conference on Artificial Intelligence, Nagoya, Japan, 1997: 770~775 被引量:1
  • 6[6]L E Baum,T Petrie. Statistical inference for probabilistic functions of finite state[J].Ann Math Stat, 1996 被引量:1
  • 7[7]R Agrawal. Data mining:Crossing the chasm[R].Invited talk at the 5th ACM SiGKDD Int conference on Knowledge Discovery and Data Mining, 1996 被引量:1
  • 8[8]Ralph Kimball,Richard Merz.The Data Webhouse Toolkit.John Wiley and Sons,Inc.2000 被引量:1
  • 9[9]Thorsten Joachinms. Text categorization with support vector machines:Learning with many relevant features[C].In:European Conference onMachine Leaning(ECML), 1998 被引量:1
  • 10[10]V Vapnik.The nature of Statistical Learning Theory[M].Springer Verlag,New York, 1995 被引量:1

共引文献41

同被引文献18

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部