期刊文献+

浅谈“个性化”搜索 被引量:1

On "Personalized" Searching
下载PDF
导出
摘要 传统信息检索技术满足了人们一定的需要,由于其通用的性质,仍不能满足不同背景、不同目的和不同时期的查询请求.个性化服务技术就是针对这个问题而提出的,它为不同用户提供不同的服务,以满足不同的需求.个性化服务通过收集和分析用户信息来学习用户的兴趣和行为,从而实现主动推荐的目的.个性化服务技术能充分提高站点的服务质量和访问效率。 Traditional information retrieval technologies satisfy users' need to a great extent,However, for their all-purpose characteristics, they can't satisfy any query from different background, with different intention and at different time.Personalized service technique is put forward for this problem, it provides a different service for the different customer to satisfy a different need, The Personalized service passes collections and analyzes a customer information to study interest and behavior of customer, carrying out the purpose of active recommendation thus.The Personalized service technique can raise service quality and interview efficiency that the station orders well, drawing on more visitants thus .
作者 汪翠红 WANG Cui-hong ( The Vocational Colleges in Anhui;Hefei 230051,China)
出处 《电脑知识与技术》 2007年第5期681-681,696,共2页 Computer Knowledge and Technology
关键词 搜索引擎 个性化搜索 search engine personalized search
  • 相关文献

参考文献1

二级参考文献41

  • 1Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415. 被引量:1
  • 2Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247. 被引量:1
  • 3Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999. 被引量:1
  • 4Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381. 被引量:1
  • 5Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72. 被引量:1
  • 6Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000. 被引量:1
  • 7Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167. 被引量:1
  • 8Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52. 被引量:1
  • 9Aggarwal, C.C., Wolf, J.L., Wu, K., et al. Horting hatches an egg: a new raph-theoretic approach to collaborative filtering. In: Chaudhuri, S., Madigan, D., Fayyad, U., eds. Proceedings of the ACM International Conference on Knowledg e Discovery and Data Mining. New York: ACM Press, 1999. 201~212. 被引量:1
  • 10Sarwar, B., Karypis, G., Konstan, J., et al. Item-Based collaborative fil tering recommendation algorithms. In: Shen, V.Y., Saito, N., eds. Proceedings of the 10th International World Wide Web Conference (WWW10). 2001. 285~295. 被引量:1

共引文献394

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部