期刊文献+

一种基于用户行为反馈的兴趣度模型更新算法 被引量:11

A Personal Interest Degree Model Updating Algorithm Based on Consumer Behavior Feedback
下载PDF
导出
摘要 个性化推荐技术在电子商务系统中得到了广泛应用.针对现有的用户模型不能及时根据用户自身兴趣偏移进行更新的问题,提出了一种基于用户行为反馈的兴趣度模型的更新算法,在创建好模型的基础上,分析用户的购买记录和用户的浏览行为,结合用户的兴趣内容,实现用户兴趣的自动更新,得到的针对新的用户兴趣的推荐商品列表,在此基础上结合用户的购买商品记录,实现推荐商品的个性化排序,从而向用户进行个性化推荐.实验对比结果表明,该算法能更好地发现用户当前的购买兴趣,从而进一步提高个性化推荐精度和用户满意度. Personalized recommendation is a widely applied technology in e-commerce.Since the existing user models can not renew in time from the consumer interest changing,the paper presents a personal interest degree model Updating algorithm based on consumer behavior feedback,which analyzes consumer purchase history and consumer behavior mode,and updates the consumer interest automatically from the user browsed contents to get the recommended list.On this basis,the algorithm can predict the personal intererst order of recommended commodities from the purchase history,which can be used to make the personalized recommendation for each user.Experimental results show that the algorithm can identify user personalization interest more efficiently,since it can improve the recommendation accuracy and customer satisfaction.
出处 《辽宁大学学报(自然科学版)》 CAS 2011年第1期40-45,共6页 Journal of Liaoning University:Natural Sciences Edition
关键词 电子商务 个性化推荐 兴趣度模型 用户行为反馈 E-commerce personalized recommendation interest degree model consumer behavior feedback
  • 相关文献

参考文献6

二级参考文献60

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 2Gediminas Adomavicius, Alexander Tuzhilin. Toward the Next Generation of Recommender Systems:A Survey of the State - of - the - Art and Possible Extensions [ J ]. IEEE. 2005, 17 ( 6 ) : 734 - 749. 被引量:1
  • 3Resnick P, Varian HR. Recommender systems [ J ]. Communications of the ACM, 1997, 40 (3) :66 - 72. 被引量:1
  • 4Greg Linden, Brent Smith ,Jeremy York. Amazon. corn recommendations : Item - to - Item collaborative filtering[ J]. IEEE Internet Computing, 2003,7 ( 1 ) : 76 - 80. 被引量:1
  • 5Gediminas Adomavicius, YoungOK Kwon. New Recommendation Techniques for Multieriteria Rating Systems [ J ]. IEEE Intelligent Systems, 2007,22 (3) :48 - 55. 被引量:1
  • 6Yangming Zhang, Jiayin Qi, Huaying Shu, et al. Personalized product Recommendation based on Customer Value Hierarchy [ C ]. IEEE International Conference on In Systems, Man and Cybernetics,2007:3250 - 3254. 被引量:1
  • 7Yoshii K, Goto M, Komatani K, et al. An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model [ J ]. IEEE Transactions on Audio Speech and Language Processing,2008,16(2) :435 -447. 被引量:1
  • 8Furnas GW, Landauer TK, Gomez LM, Dumais ST. The vocabulary problem in human-system communication. Communication of ACM, 1987,30(11):964~971. 被引量:1
  • 9Wen JR, Nie JY, Zhang HJ. Clustering user queries of a search engine. In: Proceedings of the 10th International World Wide Web Conference (WWW10). New York: ACM Press, 2001. 162~168. 被引量:1
  • 10Xu JX, Croft WB. Query expansion using local and global document analysis. In: Frei HP, Harman D, Schauble P, Wilkinson R,eds. Proceedings of the 19th Annual International SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1996. 4~11. 被引量:1

共引文献453

同被引文献108

引证文献11

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部