期刊文献+

一种新的基于数值积分的粒子滤波算法 被引量:3

A New Particle Filter Based on Numerical Integration Method
下载PDF
导出
摘要 该文提出了一种新的用于非线性非高斯系统状态估计的粒子滤波算法。首先通过基于数值积分的差商滤波器产生重要密度函数,由于这些重要密度函数结合了最新的观测数据,这样采样得到的样本更接近于系统状态的真实后验概率,因此其性能优于标准的粒子滤波算法。最后给出了理论分析和仿真结果,验证了该算法的有效性。 This paper introduces a new particle filter for nonlinear and non-Gaussian systems.The divided difference filter based on numerical integration is used for generating the importance density functions.As it integrates the new observations into system state transition density, which approximates to the state posterior density, the proposed particle filter has the better performance than the conventional one. Finally, the validity of this method is well verified by the computer simulations.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第6期1369-1372,共4页 Journal of Electronics & Information Technology
基金 国家部级基金资助课题
关键词 数值积分 差商滤波器 粒子滤波 贝叶斯滤波 目标跟踪 Numerical integration Divided difference filter Particle filtering Bayesian filtering Target tracking
  • 相关文献

参考文献16

  • 1Lee D S and Chia N K K.A particle algorithm for sequential Bayesian parameter estimation and model selection[J].IEEE Trans.on Signal Processing,2002,50(2):326-336. 被引量:1
  • 2Hue C and Cadre L.Sequential Monte Carlo methods for multiple target tracking and data fusion[J].IEEE Trans.on Signal Processing,2002,50(2):309-325. 被引量:1
  • 3Djuric P M,Kotecha J H,and Zhang J,et al..Particle filtering[J].IEEE Singal Processing Magazine,2003,20(9):19-38. 被引量:1
  • 4Orton M and Fitzgerald W.A Bayesian approach to tracking multiple targets using sensor arrays and particle filters[J].IEEE Trans.on Signal Processing,2002,50(2):216-223. 被引量:1
  • 5Arulampalam M S,Maskell S,and Gordon N,et al.A turtorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans.on Signal Processing,2002,50(2):174-188. 被引量:1
  • 6莫以为,萧德云.基于粒子滤波算法的混合系统监测与诊断(英文)[J].自动化学报,2003,29(5):641-648. 被引量:34
  • 7袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973. 被引量:77
  • 8Storvik G.Particle filters for state-space models with the presence of unknown static parameters[J].IEEE Trans.on Signal Processing,2002,50(2):281-289. 被引量:1
  • 9Kotecha J H and Djuric P M.Gaussian particle filtering[J].IEEE Trans.on Signal Processing,2003,51(10):2592-2601. 被引量:1
  • 10Kotecha J H and Djuric P M.Gaussian sum particle filtering[J].IEEE Trans.on Signal Processing,2003,51(10):2602-2612. 被引量:1

二级参考文献17

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978.. 被引量:1
  • 2G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25. 被引量:1
  • 3Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995. 被引量:1
  • 4M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356. 被引量:1
  • 5I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com. 被引量:1
  • 6S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997. 被引量:1
  • 7A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com. 被引量:1
  • 8R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000. 被引量:1
  • 9N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,. 被引量:1
  • 10Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE proceedings-F, 1993,140(2) z 107-113. 被引量:1

共引文献105

同被引文献78

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部