期刊文献+

基于HMM模型的贝叶斯滤波方法

Bayesian Filter Approach Based on HMM
下载PDF
导出
摘要 针对非线性动态系统估计问题,引入了一种不完全观测数据的统计模型——HMM模型,其双层随机结构较好地满足了实际估计的要求.在具体滤波过程中,将处理非线性问题常用的贝叶斯方法和HMM模型进行结合,通过预测和更新操作实现系统状态后验的连续递推估计,提高了运算速度. About the problem of nonlinear dynamic system estimation, the authors introduce the HMM, a kind of statistical model based on incomplete data, whose two- double random structure can meet the need of solving actual estimation problems. In the flitting process, by combining bayesian filter with HMM, the estimation of the posterior density of the systemic state through the predicting arithmetic and the updating arithmetic can be implemented continuously. At the same time, the velocity of operation can also be improved.
出处 《佳木斯大学学报(自然科学版)》 CAS 2009年第2期214-216,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 贝叶斯滤波 HMM 非线性动态系统 估计 Bayesian filter HMM nonlinear dynamic system estimate
  • 相关文献

参考文献6

  • 1Welch G and Bishop G. An Introduction to the Kalman Filter. In: http://www.cs.unc.edu, UNC-ChapelHill, TR95-041, 2000. 被引量:1
  • 2S.J. Julier, J.K. Uhlmann, A New Extension of the Kalman Filter to Nonlinear Systems, in: Prec. AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Simulation and Controls, 1997. 被引量:1
  • 3谢锦辉著..隐Markov模型 HMM 及其在语音处理中的应用[M].武汉:华中理工大学出版社,1995:154.
  • 4张孝令等编著..贝叶斯动态模型及其预测[M].济南:山东科学技术出版社,1992:431.
  • 5RABINER L R. A Tutorial on Hidden Markov Models and ,Selected Applications in Speech Recognition. Proceedinss tithe IEEE, 1989: 257 - 285. 被引量:1
  • 6D Fox, J Hightower, L Liao, D Schulz, G Borriello. Bayesian Filtering for Location Estimation. IEEE Pervasive Gomputing, 2003. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部