期刊文献+

基于K-L变换的支持向量机在汽轮机故障诊断中的应用 被引量:8

Application of Support Vector Machine Based on K-L Transform in Turbine Fault Diagnosis
下载PDF
导出
摘要 支持向量机应用于故障诊断是近年来研究的热点,在支持向量机算法的基础上,以汽轮机故障为例,引入了K-L变换对故障特征进行提取。结果表明,经K-L变换后的支持向量机算法能够保证故障信息的完整性,有效识别临界故障状态,提高了故障的分类精度,扩展了支持向量机的应用范畴。 The application of support vector machine in fault diagnosis is the research hotspots in recent years. This paper first researches the algorithm of support vector machine, and introduces K - L transform method to extract the characteristic of the diagnosis of turbine. The result indicates that the algorithm of support vector machine based on K - L transform can ensure the integrality of diagnosis characteristic, and effectively recognize the critical diagnosis, which improves the precision of classification and extends thee application bound of support vector machine.
出处 《汽轮机技术》 北大核心 2007年第2期148-150,共3页 Turbine Technology
基金 华北电力大学博士教师学位科研基金(92104392)资助
关键词 支持向量机 K—L变换 特征提取 故障诊断 support vector machine K - L transform feature extraction fault diagnosis
  • 相关文献

参考文献5

  • 1Vapnik V.The nature of statistical learning theory[M].New York:Springer,1995. 被引量:1
  • 2Poyhonen S,Negrea M,Arkkio A,et al.Support vector classification for fault diagnostics of an electrical machine[A].Proc.Of Int.Conf.On Signal Processing (ICSP'02)[C].Beijing:August,2002.26-30. 被引量:1
  • 3Chapelle O,vapnik V,Bousquet O,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46:131-159. 被引量:1
  • 4Keerthi S S.Efficient tuning of SVM hyper parameters using radius/margin bound and iterative algorithms[J].IEEE Trans,On Neural Networks,2002,13 (5):1225-1229. 被引量:1
  • 5边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.

同被引文献83

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部